7 |
use PageBuilder; |
use PageBuilder; |
8 |
use ERDBLoad; |
use ERDBLoad; |
9 |
use FIG; |
use FIG; |
10 |
|
use FIGRules; |
11 |
use Sprout; |
use Sprout; |
12 |
use Stats; |
use Stats; |
13 |
use BasicLocation; |
use BasicLocation; |
81 |
Either the name of the file containing the list of trusted subsystems or a reference |
Either the name of the file containing the list of trusted subsystems or a reference |
82 |
to a list of subsystem names. If nothing is specified, all NMPDR subsystems will be |
to a list of subsystem names. If nothing is specified, all NMPDR subsystems will be |
83 |
considered trusted. (A subsystem is considered NMPDR if it has a file named C<NMPDR> |
considered trusted. (A subsystem is considered NMPDR if it has a file named C<NMPDR> |
84 |
in its data directory.) Only subsystem data related to the trusted subsystems is loaded. |
in its data directory.) Only subsystem data related to the NMPDR subsystems is loaded. |
85 |
|
|
86 |
=item options |
=item options |
87 |
|
|
121 |
# an omitted access code can be defaulted to 1. |
# an omitted access code can be defaulted to 1. |
122 |
for my $genomeLine (@genomeList) { |
for my $genomeLine (@genomeList) { |
123 |
my ($genomeID, $accessCode) = split("\t", $genomeLine); |
my ($genomeID, $accessCode) = split("\t", $genomeLine); |
124 |
if (undef $accessCode) { |
if (! defined($accessCode)) { |
125 |
$accessCode = 1; |
$accessCode = 1; |
126 |
} |
} |
127 |
$genomes{$genomeID} = $accessCode; |
$genomes{$genomeID} = $accessCode; |
139 |
if (! defined $subsysFile || $subsysFile eq '') { |
if (! defined $subsysFile || $subsysFile eq '') { |
140 |
# Here we want all the usable subsystems. First we get the whole list. |
# Here we want all the usable subsystems. First we get the whole list. |
141 |
my @subs = $fig->all_subsystems(); |
my @subs = $fig->all_subsystems(); |
142 |
# Loop through, checking for usability. |
# Loop through, checking for the NMPDR file. |
143 |
for my $sub (@subs) { |
for my $sub (@subs) { |
144 |
if ($fig->usable_subsystem($sub)) { |
if ($fig->nmpdr_subsystem($sub)) { |
145 |
$subsystems{$sub} = 1; |
$subsystems{$sub} = 1; |
146 |
} |
} |
147 |
} |
} |
164 |
Confess("Invalid subsystem parameter in SproutLoad constructor."); |
Confess("Invalid subsystem parameter in SproutLoad constructor."); |
165 |
} |
} |
166 |
} |
} |
167 |
|
# Go through the subsys hash again, creating the keyword list for each subsystem. |
168 |
|
for my $subsystem (keys %subsystems) { |
169 |
|
my $name = $subsystem; |
170 |
|
$name =~ s/_/ /g; |
171 |
|
# my $classes = $fig->subsystem_classification($subsystem); |
172 |
|
# $name .= " " . join(" ", @{$classes}); |
173 |
|
$subsystems{$subsystem} = $name; |
174 |
} |
} |
175 |
|
} |
176 |
|
# Get the list of NMPDR-oriented attribute keys. |
177 |
|
my @propKeys = $fig->get_group_keys("NMPDR"); |
178 |
# Get the data directory from the Sprout object. |
# Get the data directory from the Sprout object. |
179 |
my ($directory) = $sprout->LoadInfo(); |
my ($directory) = $sprout->LoadInfo(); |
180 |
# Create the Sprout load object. |
# Create the Sprout load object. |
186 |
loadDirectory => $directory, |
loadDirectory => $directory, |
187 |
erdb => $sprout, |
erdb => $sprout, |
188 |
loaders => [], |
loaders => [], |
189 |
options => $options |
options => $options, |
190 |
|
propKeys => \@propKeys, |
191 |
}; |
}; |
192 |
# Bless and return it. |
# Bless and return it. |
193 |
bless $retVal, $class; |
bless $retVal, $class; |
207 |
return $self->{options}->{loadOnly}; |
return $self->{options}->{loadOnly}; |
208 |
} |
} |
209 |
|
|
|
=head3 PrimaryOnly |
|
|
|
|
|
C<< my $flag = $spl->PrimaryOnly; >> |
|
|
|
|
|
Return TRUE if only the main entity is to be loaded, else FALSE. |
|
|
|
|
|
=cut |
|
|
|
|
|
sub PrimaryOnly { |
|
|
my ($self) = @_; |
|
|
return $self->{options}->{primaryOnly}; |
|
|
} |
|
210 |
|
|
211 |
=head3 LoadGenomeData |
=head3 LoadGenomeData |
212 |
|
|
247 |
my $genomeCount = (keys %{$genomeHash}); |
my $genomeCount = (keys %{$genomeHash}); |
248 |
# Create load objects for each of the tables we're loading. |
# Create load objects for each of the tables we're loading. |
249 |
my $loadGenome = $self->_TableLoader('Genome'); |
my $loadGenome = $self->_TableLoader('Genome'); |
250 |
my $loadHasContig = $self->_TableLoader('HasContig', $self->PrimaryOnly); |
my $loadHasContig = $self->_TableLoader('HasContig'); |
251 |
my $loadContig = $self->_TableLoader('Contig', $self->PrimaryOnly); |
my $loadContig = $self->_TableLoader('Contig'); |
252 |
my $loadIsMadeUpOf = $self->_TableLoader('IsMadeUpOf', $self->PrimaryOnly); |
my $loadIsMadeUpOf = $self->_TableLoader('IsMadeUpOf'); |
253 |
my $loadSequence = $self->_TableLoader('Sequence', $self->PrimaryOnly); |
my $loadSequence = $self->_TableLoader('Sequence'); |
254 |
if ($self->{options}->{loadOnly}) { |
if ($self->{options}->{loadOnly}) { |
255 |
Trace("Loading from existing files.") if T(2); |
Trace("Loading from existing files.") if T(2); |
256 |
} else { |
} else { |
266 |
my $extra = join " ", @extraData; |
my $extra = join " ", @extraData; |
267 |
# Get the full taxonomy. |
# Get the full taxonomy. |
268 |
my $taxonomy = $fig->taxonomy_of($genomeID); |
my $taxonomy = $fig->taxonomy_of($genomeID); |
269 |
|
# Get the version. If no version is specified, we default to the genome ID by itself. |
270 |
|
my $version = $fig->genome_version($genomeID); |
271 |
|
if (! defined($version)) { |
272 |
|
$version = $genomeID; |
273 |
|
} |
274 |
|
# Get the DNA size. |
275 |
|
my $dnaSize = $fig->genome_szdna($genomeID); |
276 |
|
# Open the NMPDR group file for this genome. |
277 |
|
my $group; |
278 |
|
if (open(TMP, "<$FIG_Config::organisms/$genomeID/NMPDR") && |
279 |
|
defined($group = <TMP>)) { |
280 |
|
# Clean the line ending. |
281 |
|
chomp $group; |
282 |
|
} else { |
283 |
|
# No group, so use the default. |
284 |
|
$group = $FIG_Config::otherGroup; |
285 |
|
} |
286 |
|
close TMP; |
287 |
# Output the genome record. |
# Output the genome record. |
288 |
$loadGenome->Put($genomeID, $accessCode, $fig->is_complete($genomeID), $genus, |
$loadGenome->Put($genomeID, $accessCode, $fig->is_complete($genomeID), |
289 |
$species, $extra, $taxonomy); |
$dnaSize, $genus, $group, $species, $extra, $version, $taxonomy); |
290 |
# Now we loop through each of the genome's contigs. |
# Now we loop through each of the genome's contigs. |
291 |
my @contigs = $fig->all_contigs($genomeID); |
my @contigs = $fig->all_contigs($genomeID); |
292 |
for my $contigID (@contigs) { |
for my $contigID (@contigs) { |
324 |
return $retVal; |
return $retVal; |
325 |
} |
} |
326 |
|
|
|
=head3 LoadCouplingData |
|
|
|
|
|
C<< my $stats = $spl->LoadCouplingData(); >> |
|
|
|
|
|
Load the coupling and evidence data from FIG into Sprout. |
|
|
|
|
|
The coupling data specifies which genome features are functionally coupled. The |
|
|
evidence data explains why the coupling is functional. |
|
|
|
|
|
The following relations are loaded by this method. |
|
|
|
|
|
Coupling |
|
|
IsEvidencedBy |
|
|
PCH |
|
|
ParticipatesInCoupling |
|
|
UsesAsEvidence |
|
|
|
|
|
=over 4 |
|
|
|
|
|
=item RETURNS |
|
|
|
|
|
Returns a statistics object for the loads. |
|
|
|
|
|
=back |
|
|
|
|
|
=cut |
|
|
#: Return Type $%; |
|
|
sub LoadCouplingData { |
|
|
# Get this object instance. |
|
|
my ($self) = @_; |
|
|
# Get the FIG object. |
|
|
my $fig = $self->{fig}; |
|
|
# Get the genome hash. |
|
|
my $genomeFilter = $self->{genomes}; |
|
|
# Set up an ID counter for the PCHs. |
|
|
my $pchID = 0; |
|
|
# Start the loads. |
|
|
my $loadCoupling = $self->_TableLoader('Coupling'); |
|
|
my $loadIsEvidencedBy = $self->_TableLoader('IsEvidencedBy', $self->PrimaryOnly); |
|
|
my $loadPCH = $self->_TableLoader('PCH', $self->PrimaryOnly); |
|
|
my $loadParticipatesInCoupling = $self->_TableLoader('ParticipatesInCoupling', $self->PrimaryOnly); |
|
|
my $loadUsesAsEvidence = $self->_TableLoader('UsesAsEvidence', $self->PrimaryOnly); |
|
|
if ($self->{options}->{loadOnly}) { |
|
|
Trace("Loading from existing files.") if T(2); |
|
|
} else { |
|
|
Trace("Generating coupling data.") if T(2); |
|
|
# Loop through the genomes found. |
|
|
for my $genome (sort keys %{$genomeFilter}) { |
|
|
Trace("Generating coupling data for $genome.") if T(3); |
|
|
$loadCoupling->Add("genomeIn"); |
|
|
# Create a hash table for holding coupled pairs. We use this to prevent |
|
|
# duplicates. For example, if A is coupled to B, we don't want to also |
|
|
# assert that B is coupled to A, because we already know it. Fortunately, |
|
|
# all couplings occur within a genome, so we can keep the hash table |
|
|
# size reasonably small. |
|
|
my %dupHash = (); |
|
|
# Get all of the genome's PEGs. |
|
|
my @pegs = $fig->pegs_of($genome); |
|
|
# Loop through the PEGs. |
|
|
for my $peg1 (@pegs) { |
|
|
$loadCoupling->Add("pegIn"); |
|
|
Trace("Processing PEG $peg1 for $genome.") if T(4); |
|
|
# Get a list of the coupled PEGs. |
|
|
my @couplings = $fig->coupled_to($peg1); |
|
|
# For each coupled PEG, we need to verify that a coupling already |
|
|
# exists. If not, we have to create one. |
|
|
for my $coupleData (@couplings) { |
|
|
my ($peg2, $score) = @{$coupleData}; |
|
|
# Compute the coupling ID. |
|
|
my $coupleID = $self->{erdb}->CouplingID($peg1, $peg2); |
|
|
if (! exists $dupHash{$coupleID}) { |
|
|
$loadCoupling->Add("couplingIn"); |
|
|
# Here we have a new coupling to store in the load files. |
|
|
Trace("Storing coupling ($coupleID) with score $score.") if T(4); |
|
|
# Ensure we don't do this again. |
|
|
$dupHash{$coupleID} = $score; |
|
|
# Write the coupling record. |
|
|
$loadCoupling->Put($coupleID, $score); |
|
|
# Connect it to the coupled PEGs. |
|
|
$loadParticipatesInCoupling->Put($peg1, $coupleID, 1); |
|
|
$loadParticipatesInCoupling->Put($peg2, $coupleID, 2); |
|
|
# Get the evidence for this coupling. |
|
|
my @evidence = $fig->coupling_evidence($peg1, $peg2); |
|
|
# Organize the evidence into a hash table. |
|
|
my %evidenceMap = (); |
|
|
# Process each evidence item. |
|
|
for my $evidenceData (@evidence) { |
|
|
$loadPCH->Add("evidenceIn"); |
|
|
my ($peg3, $peg4, $usage) = @{$evidenceData}; |
|
|
# Only proceed if the evidence is from a Sprout |
|
|
# genome. |
|
|
if ($genomeFilter->{$fig->genome_of($peg3)}) { |
|
|
$loadUsesAsEvidence->Add("evidenceChosen"); |
|
|
my $evidenceKey = "$coupleID $peg3 $peg4"; |
|
|
# We store this evidence in the hash if the usage |
|
|
# is nonzero or no prior evidence has been found. This |
|
|
# insures that if there is duplicate evidence, we |
|
|
# at least keep the meaningful ones. Only evidence in |
|
|
# the hash makes it to the output. |
|
|
if ($usage || ! exists $evidenceMap{$evidenceKey}) { |
|
|
$evidenceMap{$evidenceKey} = $evidenceData; |
|
|
} |
|
|
} |
|
|
} |
|
|
for my $evidenceID (keys %evidenceMap) { |
|
|
# Get the ID for this evidence. |
|
|
$pchID++; |
|
|
# Create the evidence record. |
|
|
my ($peg3, $peg4, $usage) = @{$evidenceMap{$evidenceID}}; |
|
|
$loadPCH->Put($pchID, $usage); |
|
|
# Connect it to the coupling. |
|
|
$loadIsEvidencedBy->Put($coupleID, $pchID); |
|
|
# Connect it to the features. |
|
|
$loadUsesAsEvidence->Put($pchID, $peg3, 1); |
|
|
$loadUsesAsEvidence->Put($pchID, $peg4, 2); |
|
|
} |
|
|
} |
|
|
} |
|
|
} |
|
|
} |
|
|
} |
|
|
# All done. Finish the load. |
|
|
my $retVal = $self->_FinishAll(); |
|
|
return $retVal; |
|
|
} |
|
|
|
|
327 |
=head3 LoadFeatureData |
=head3 LoadFeatureData |
328 |
|
|
329 |
C<< my $stats = $spl->LoadFeatureData(); >> |
C<< my $stats = $spl->LoadFeatureData(); >> |
336 |
|
|
337 |
Feature |
Feature |
338 |
FeatureAlias |
FeatureAlias |
339 |
|
IsAliasOf |
340 |
FeatureLink |
FeatureLink |
341 |
FeatureTranslation |
FeatureTranslation |
342 |
FeatureUpstream |
FeatureUpstream |
343 |
IsLocatedIn |
IsLocatedIn |
344 |
HasFeature |
HasFeature |
345 |
|
HasRoleInSubsystem |
346 |
|
FeatureEssential |
347 |
|
FeatureVirulent |
348 |
|
FeatureIEDB |
349 |
|
CDD |
350 |
|
IsPresentOnProteinOf |
351 |
|
|
352 |
=over 4 |
=over 4 |
353 |
|
|
362 |
sub LoadFeatureData { |
sub LoadFeatureData { |
363 |
# Get this object instance. |
# Get this object instance. |
364 |
my ($self) = @_; |
my ($self) = @_; |
365 |
# Get the FIG object. |
# Get the FIG and Sprout objects. |
366 |
my $fig = $self->{fig}; |
my $fig = $self->{fig}; |
367 |
|
my $sprout = $self->{sprout}; |
368 |
# Get the table of genome IDs. |
# Get the table of genome IDs. |
369 |
my $genomeHash = $self->{genomes}; |
my $genomeHash = $self->{genomes}; |
370 |
# Create load objects for each of the tables we're loading. |
# Create load objects for each of the tables we're loading. |
371 |
my $loadFeature = $self->_TableLoader('Feature'); |
my $loadFeature = $self->_TableLoader('Feature'); |
372 |
my $loadIsLocatedIn = $self->_TableLoader('IsLocatedIn', $self->PrimaryOnly); |
my $loadIsLocatedIn = $self->_TableLoader('IsLocatedIn'); |
373 |
my $loadFeatureAlias = $self->_TableLoader('FeatureAlias'); |
my $loadFeatureAlias = $self->_TableLoader('FeatureAlias'); |
374 |
|
my $loadIsAliasOf = $self->_TableLoader('IsAliasOf'); |
375 |
my $loadFeatureLink = $self->_TableLoader('FeatureLink'); |
my $loadFeatureLink = $self->_TableLoader('FeatureLink'); |
376 |
my $loadFeatureTranslation = $self->_TableLoader('FeatureTranslation'); |
my $loadFeatureTranslation = $self->_TableLoader('FeatureTranslation'); |
377 |
my $loadFeatureUpstream = $self->_TableLoader('FeatureUpstream'); |
my $loadFeatureUpstream = $self->_TableLoader('FeatureUpstream'); |
378 |
my $loadHasFeature = $self->_TableLoader('HasFeature'); |
my $loadHasFeature = $self->_TableLoader('HasFeature'); |
379 |
|
my $loadHasRoleInSubsystem = $self->_TableLoader('HasRoleInSubsystem'); |
380 |
|
my $loadFeatureEssential = $self->_TableLoader('FeatureEssential'); |
381 |
|
my $loadFeatureVirulent = $self->_TableLoader('FeatureVirulent'); |
382 |
|
my $loadFeatureIEDB = $self->_TableLoader('FeatureIEDB'); |
383 |
|
my $loadCDD = $self->_TableLoader('CDD'); |
384 |
|
my $loadIsPresentOnProteinOf = $self->_TableLoader('IsPresentOnProteinOf'); |
385 |
|
# Get the subsystem hash. |
386 |
|
my $subHash = $self->{subsystems}; |
387 |
|
# Get the property keys. |
388 |
|
my $propKeys = $self->{propKeys}; |
389 |
|
# Create a hashes to hold CDD and alias values. |
390 |
|
my %CDD = (); |
391 |
|
my %alias = (); |
392 |
# Get the maximum sequence size. We need this later for splitting up the |
# Get the maximum sequence size. We need this later for splitting up the |
393 |
# locations. |
# locations. |
394 |
my $chunkSize = $self->{sprout}->MaxSegment(); |
my $chunkSize = $self->{sprout}->MaxSegment(); |
401 |
Trace("Loading features for genome $genomeID.") if T(3); |
Trace("Loading features for genome $genomeID.") if T(3); |
402 |
$loadFeature->Add("genomeIn"); |
$loadFeature->Add("genomeIn"); |
403 |
# Get the feature list for this genome. |
# Get the feature list for this genome. |
404 |
my $features = $fig->all_features_detailed($genomeID); |
my $features = $fig->all_features_detailed_fast($genomeID); |
405 |
# Sort and count the list. |
# Sort and count the list. |
406 |
my @featureTuples = sort { $a->[0] cmp $b->[0] } @{$features}; |
my @featureTuples = sort { $a->[0] cmp $b->[0] } @{$features}; |
407 |
my $count = scalar @featureTuples; |
my $count = scalar @featureTuples; |
408 |
|
my @fids = map { $_->[0] } @featureTuples; |
409 |
Trace("$count features found for genome $genomeID.") if T(3); |
Trace("$count features found for genome $genomeID.") if T(3); |
410 |
|
# Get the attributes for this genome and put them in a hash by feature ID. |
411 |
|
my $attributes = GetGenomeAttributes($fig, $genomeID, \@fids, $propKeys); |
412 |
# Set up for our duplicate-feature check. |
# Set up for our duplicate-feature check. |
413 |
my $oldFeatureID = ""; |
my $oldFeatureID = ""; |
414 |
# Loop through the features. |
# Loop through the features. |
415 |
for my $featureTuple (@featureTuples) { |
for my $featureTuple (@featureTuples) { |
416 |
# Split the tuple. |
# Split the tuple. |
417 |
my ($featureID, $locations, undef, $type) = @{$featureTuple}; |
my ($featureID, $locations, undef, $type, $minloc, $maxloc, $assignment, $user, $quality) = @{$featureTuple}; |
418 |
# Check for duplicates. |
# Check for duplicates. |
419 |
if ($featureID eq $oldFeatureID) { |
if ($featureID eq $oldFeatureID) { |
420 |
Trace("Duplicate feature $featureID found.") if T(1); |
Trace("Duplicate feature $featureID found.") if T(1); |
422 |
$oldFeatureID = $featureID; |
$oldFeatureID = $featureID; |
423 |
# Count this feature. |
# Count this feature. |
424 |
$loadFeature->Add("featureIn"); |
$loadFeature->Add("featureIn"); |
425 |
# Create the feature record. |
# Fix the quality. It is almost always a space, but some odd stuff might sneak through, and the |
426 |
$loadFeature->Put($featureID, 1, $type); |
# Sprout database requires a single character. |
427 |
# Link it to the parent genome. |
if (! defined($quality) || $quality eq "") { |
428 |
$loadHasFeature->Put($genomeID, $featureID, $type); |
$quality = " "; |
429 |
|
} |
430 |
|
# Begin building the keywords. We start with the genome ID, the |
431 |
|
# feature ID, the taxonomy, and the organism name. |
432 |
|
my @keywords = ($genomeID, $featureID, $fig->genus_species($genomeID), |
433 |
|
$fig->taxonomy_of($genomeID)); |
434 |
# Create the aliases. |
# Create the aliases. |
435 |
for my $alias ($fig->feature_aliases($featureID)) { |
for my $alias ($fig->feature_aliases($featureID)) { |
436 |
$loadFeatureAlias->Put($featureID, $alias); |
#Connect this alias to this feature. |
437 |
} |
$loadIsAliasOf->Put($alias, $featureID); |
438 |
|
push @keywords, $alias; |
439 |
|
# If this is a locus tag, also add its natural form as a keyword. |
440 |
|
my $naturalName = AliasAnalysis::Type(LocusTag => $alias); |
441 |
|
if ($naturalName) { |
442 |
|
push @keywords, $naturalName; |
443 |
|
} |
444 |
|
# If this is the first time for the specified alias, create its |
445 |
|
# alias record. |
446 |
|
if (! exists $alias{$alias}) { |
447 |
|
$loadFeatureAlias->Put($alias); |
448 |
|
$alias{$alias} = 1; |
449 |
|
} |
450 |
|
} |
451 |
|
Trace("Assignment for $featureID is: $assignment") if T(4); |
452 |
|
# Break the assignment into words and shove it onto the |
453 |
|
# keyword list. |
454 |
|
push @keywords, split(/\s+/, $assignment); |
455 |
|
# Link this feature to the parent genome. |
456 |
|
$loadHasFeature->Put($genomeID, $featureID, $type); |
457 |
# Get the links. |
# Get the links. |
458 |
my @links = $fig->fid_links($featureID); |
my @links = $fig->fid_links($featureID); |
459 |
for my $link (@links) { |
for my $link (@links) { |
472 |
$loadFeatureUpstream->Put($featureID, $upstream); |
$loadFeatureUpstream->Put($featureID, $upstream); |
473 |
} |
} |
474 |
} |
} |
475 |
|
# Now we need to find the subsystems this feature participates in. |
476 |
|
# We also add the subsystems to the keyword list. Before we do that, |
477 |
|
# we must convert underscores to spaces. |
478 |
|
my @subsystems = $fig->peg_to_subsystems($featureID); |
479 |
|
for my $subsystem (@subsystems) { |
480 |
|
# Only proceed if we like this subsystem. |
481 |
|
if (exists $subHash->{$subsystem}) { |
482 |
|
# Store the has-role link. |
483 |
|
$loadHasRoleInSubsystem->Put($featureID, $subsystem, $genomeID, $type); |
484 |
|
# Save the subsystem's keyword data. |
485 |
|
my $subKeywords = $subHash->{$subsystem}; |
486 |
|
push @keywords, split /\s+/, $subKeywords; |
487 |
|
# Now we need to get this feature's role in the subsystem. |
488 |
|
my $subObject = $fig->get_subsystem($subsystem); |
489 |
|
my @roleColumns = $subObject->get_peg_roles($featureID); |
490 |
|
my @allRoles = $subObject->get_roles(); |
491 |
|
for my $col (@roleColumns) { |
492 |
|
my $role = $allRoles[$col]; |
493 |
|
push @keywords, split /\s+/, $role; |
494 |
|
push @keywords, $subObject->get_role_abbr($col); |
495 |
|
} |
496 |
|
} |
497 |
|
} |
498 |
|
# There are three special attributes computed from property |
499 |
|
# data that we build next. If the special attribute is non-empty, |
500 |
|
# its name will be added to the keyword list. First, we get all |
501 |
|
# the attributes for this feature. They will come back as |
502 |
|
# 4-tuples: [peg, name, value, URL]. We use a 3-tuple instead: |
503 |
|
# [name, value, value with URL]. (We don't need the PEG, since |
504 |
|
# we already know it.) |
505 |
|
my @attributes = map { [$_->[1], $_->[2], Tracer::CombineURL($_->[2], $_->[3])] } |
506 |
|
@{$attributes->{$featureID}}; |
507 |
|
# Now we process each of the special attributes. |
508 |
|
if (SpecialAttribute($featureID, \@attributes, |
509 |
|
1, [0,2], '^(essential|potential_essential)$', |
510 |
|
$loadFeatureEssential)) { |
511 |
|
push @keywords, 'essential'; |
512 |
|
$loadFeature->Add('essential'); |
513 |
|
} |
514 |
|
if (SpecialAttribute($featureID, \@attributes, |
515 |
|
0, [2], '^virulen', |
516 |
|
$loadFeatureVirulent)) { |
517 |
|
push @keywords, 'virulent'; |
518 |
|
$loadFeature->Add('virulent'); |
519 |
|
} |
520 |
|
if (SpecialAttribute($featureID, \@attributes, |
521 |
|
0, [0,2], '^iedb_', |
522 |
|
$loadFeatureIEDB)) { |
523 |
|
push @keywords, 'iedb'; |
524 |
|
$loadFeature->Add('iedb'); |
525 |
|
} |
526 |
|
# Now we have some other attributes we need to process. Currently, |
527 |
|
# this is CDD and CELLO, but we expect the number to increase. |
528 |
|
my %attributeHash = (); |
529 |
|
for my $attrRow (@{$attributes->{$featureID}}) { |
530 |
|
my (undef, $key, @values) = @{$attrRow}; |
531 |
|
$key =~ /^([^:]+)::(.+)/; |
532 |
|
if (exists $attributeHash{$1}) { |
533 |
|
$attributeHash{$1}->{$2} = \@values; |
534 |
|
} else { |
535 |
|
$attributeHash{$1} = {$2 => \@values}; |
536 |
|
} |
537 |
|
} |
538 |
|
my $celloValue = "unknown"; |
539 |
|
# Pull in the CELLO attribute. There will never be more than one. |
540 |
|
# If we have one, it's a feature attribute AND a keyword. |
541 |
|
my @celloData = keys %{$attributeHash{CELLO}}; |
542 |
|
if (@celloData) { |
543 |
|
$celloValue = $celloData[0]; |
544 |
|
push @keywords, $celloValue; |
545 |
|
} |
546 |
|
# Now we handle CDD. This is a bit more complicated, because |
547 |
|
# there are multiple CDDs per protein. |
548 |
|
if (exists $attributeHash{CDD}) { |
549 |
|
# Get the hash of CDD IDs to scores for this feature. We |
550 |
|
# already know it exists because of the above IF. |
551 |
|
my $cddHash = $attributeHash{CDD}; |
552 |
|
my @cddData = sort keys %{$cddHash}; |
553 |
|
for my $cdd (@cddData) { |
554 |
|
# Extract the score for this CDD and decode it. |
555 |
|
my ($codeScore) = split(/\s*,\s*/, $cddHash->{$cdd}->[0]); |
556 |
|
my $realScore = FIGRules::DecodeScore($codeScore); |
557 |
|
# Create the connection. |
558 |
|
$loadIsPresentOnProteinOf->Put($cdd, $featureID, $realScore); |
559 |
|
# If this CDD does not yet exist, create its record. |
560 |
|
if (! exists $CDD{$cdd}) { |
561 |
|
$CDD{$cdd} = 1; |
562 |
|
$loadCDD->Put($cdd); |
563 |
|
} |
564 |
|
} |
565 |
|
} |
566 |
|
# Now we need to bust up hyphenated words in the keyword |
567 |
|
# list. We keep them separate and put them at the end so |
568 |
|
# the original word order is available. |
569 |
|
my $keywordString = ""; |
570 |
|
my $bustedString = ""; |
571 |
|
for my $keyword (@keywords) { |
572 |
|
if (length $keyword >= 3) { |
573 |
|
$keywordString .= " $keyword"; |
574 |
|
if ($keyword =~ /-/) { |
575 |
|
my @words = split /-/, $keyword; |
576 |
|
$bustedString .= join(" ", "", @words); |
577 |
|
} |
578 |
|
} |
579 |
|
} |
580 |
|
$keywordString .= $bustedString; |
581 |
|
# Get rid of annoying punctuation. |
582 |
|
$keywordString =~ s/[();]//g; |
583 |
|
# Clean the keyword list. |
584 |
|
my $cleanWords = $sprout->CleanKeywords($keywordString); |
585 |
|
Trace("Keyword string for $featureID: $cleanWords") if T(4); |
586 |
|
# Now we need to process the feature's locations. First, we split them up. |
587 |
|
my @locationList = split /\s*,\s*/, $locations; |
588 |
|
# Next, we convert them to Sprout location objects. |
589 |
|
my @locObjectList = map { BasicLocation->new("$genomeID:$_") } @locationList; |
590 |
# This part is the roughest. We need to relate the features to contig |
# This part is the roughest. We need to relate the features to contig |
591 |
# locations, and the locations must be split so that none of them exceed |
# locations, and the locations must be split so that none of them exceed |
592 |
# the maximum segment size. This simplifies the genes_in_region processing |
# the maximum segment size. This simplifies the genes_in_region processing |
593 |
# for Sprout. |
# for Sprout. To start, we create the location position indicator. |
|
my @locationList = split /\s*,\s*/, $locations; |
|
|
# Create the location position indicator. |
|
594 |
my $i = 1; |
my $i = 1; |
595 |
# Loop through the locations. |
# Loop through the locations. |
596 |
for my $location (@locationList) { |
for my $locObject (@locObjectList) { |
597 |
# Parse the location. |
# Split this location into a list of chunks. |
|
my $locObject = BasicLocation->new("$genomeID:$location"); |
|
|
# Split it into a list of chunks. |
|
598 |
my @locOList = (); |
my @locOList = (); |
599 |
while (my $peeling = $locObject->Peel($chunkSize)) { |
while (my $peeling = $locObject->Peel($chunkSize)) { |
600 |
$loadIsLocatedIn->Add("peeling"); |
$loadIsLocatedIn->Add("peeling"); |
609 |
$i++; |
$i++; |
610 |
} |
} |
611 |
} |
} |
612 |
} |
# Finally, reassemble the location objects into a list of Sprout location strings. |
613 |
} |
$locations = join(", ", map { $_->String } @locObjectList); |
614 |
} |
# Create the feature record. |
615 |
} |
$loadFeature->Put($featureID, 1, $user, $quality, $celloValue, $type, $assignment, $cleanWords, $locations); |
|
# Finish the loads. |
|
|
my $retVal = $self->_FinishAll(); |
|
|
return $retVal; |
|
|
} |
|
|
|
|
|
=head3 LoadBBHData |
|
|
|
|
|
C<< my $stats = $spl->LoadBBHData(); >> |
|
|
|
|
|
Load the bidirectional best hit data from FIG into Sprout. |
|
|
|
|
|
Sprout does not store information on similarities. Instead, it has only the |
|
|
bi-directional best hits. Even so, the BBH table is one of the largest in |
|
|
the database. |
|
|
|
|
|
The following relations are loaded by this method. |
|
|
|
|
|
IsBidirectionalBestHitOf |
|
|
|
|
|
=over 4 |
|
|
|
|
|
=item RETURNS |
|
|
|
|
|
Returns a statistics object for the loads. |
|
|
|
|
|
=back |
|
|
|
|
|
=cut |
|
|
#: Return Type $%; |
|
|
sub LoadBBHData { |
|
|
# Get this object instance. |
|
|
my ($self) = @_; |
|
|
# Get the FIG object. |
|
|
my $fig = $self->{fig}; |
|
|
# Get the table of genome IDs. |
|
|
my $genomeHash = $self->{genomes}; |
|
|
# Create load objects for each of the tables we're loading. |
|
|
my $loadIsBidirectionalBestHitOf = $self->_TableLoader('IsBidirectionalBestHitOf'); |
|
|
if ($self->{options}->{loadOnly}) { |
|
|
Trace("Loading from existing files.") if T(2); |
|
|
} else { |
|
|
Trace("Generating BBH data.") if T(2); |
|
|
# Now we loop through the genomes, generating the data for each one. |
|
|
for my $genomeID (sort keys %{$genomeHash}) { |
|
|
$loadIsBidirectionalBestHitOf->Add("genomeIn"); |
|
|
Trace("Processing features for genome $genomeID.") if T(3); |
|
|
# Get the feature list for this genome. |
|
|
my $features = $fig->all_features_detailed($genomeID); |
|
|
# Loop through the features. |
|
|
for my $featureData (@{$features}) { |
|
|
# Split the tuple. |
|
|
my ($featureID, $locations, $aliases, $type) = @{$featureData}; |
|
|
# Get the bi-directional best hits. |
|
|
my @bbhList = $fig->bbhs($featureID); |
|
|
for my $bbhEntry (@bbhList) { |
|
|
# Get the target feature ID and the score. |
|
|
my ($targetID, $score) = @{$bbhEntry}; |
|
|
# Check the target feature's genome. |
|
|
my $targetGenomeID = $fig->genome_of($targetID); |
|
|
# Only proceed if it's one of our genomes. |
|
|
if ($genomeHash->{$targetGenomeID}) { |
|
|
$loadIsBidirectionalBestHitOf->Put($featureID, $targetID, $targetGenomeID, |
|
|
$score); |
|
|
} |
|
616 |
} |
} |
617 |
} |
} |
618 |
} |
} |
640 |
SubsystemClass |
SubsystemClass |
641 |
Role |
Role |
642 |
RoleEC |
RoleEC |
643 |
|
IsIdentifiedByEC |
644 |
SSCell |
SSCell |
645 |
ContainsFeature |
ContainsFeature |
646 |
IsGenomeOf |
IsGenomeOf |
682 |
# Get the map list. |
# Get the map list. |
683 |
my @maps = $fig->all_maps; |
my @maps = $fig->all_maps; |
684 |
# Create load objects for each of the tables we're loading. |
# Create load objects for each of the tables we're loading. |
685 |
my $loadDiagram = $self->_TableLoader('Diagram', $self->PrimaryOnly); |
my $loadDiagram = $self->_TableLoader('Diagram'); |
686 |
my $loadRoleOccursIn = $self->_TableLoader('RoleOccursIn', $self->PrimaryOnly); |
my $loadRoleOccursIn = $self->_TableLoader('RoleOccursIn'); |
687 |
my $loadSubsystem = $self->_TableLoader('Subsystem'); |
my $loadSubsystem = $self->_TableLoader('Subsystem'); |
688 |
my $loadRole = $self->_TableLoader('Role', $self->PrimaryOnly); |
my $loadRole = $self->_TableLoader('Role'); |
689 |
my $loadRoleEC = $self->_TableLoader('RoleEC', $self->PrimaryOnly); |
my $loadRoleEC = $self->_TableLoader('RoleEC'); |
690 |
my $loadCatalyzes = $self->_TableLoader('Catalyzes', $self->PrimaryOnly); |
my $loadIsIdentifiedByEC = $self->_TableLoader('IsIdentifiedByEC'); |
691 |
my $loadSSCell = $self->_TableLoader('SSCell', $self->PrimaryOnly); |
my $loadCatalyzes = $self->_TableLoader('Catalyzes'); |
692 |
my $loadContainsFeature = $self->_TableLoader('ContainsFeature', $self->PrimaryOnly); |
my $loadSSCell = $self->_TableLoader('SSCell'); |
693 |
my $loadIsGenomeOf = $self->_TableLoader('IsGenomeOf', $self->PrimaryOnly); |
my $loadContainsFeature = $self->_TableLoader('ContainsFeature'); |
694 |
my $loadIsRoleOf = $self->_TableLoader('IsRoleOf', $self->PrimaryOnly); |
my $loadIsGenomeOf = $self->_TableLoader('IsGenomeOf'); |
695 |
my $loadOccursInSubsystem = $self->_TableLoader('OccursInSubsystem', $self->PrimaryOnly); |
my $loadIsRoleOf = $self->_TableLoader('IsRoleOf'); |
696 |
my $loadParticipatesIn = $self->_TableLoader('ParticipatesIn', $self->PrimaryOnly); |
my $loadOccursInSubsystem = $self->_TableLoader('OccursInSubsystem'); |
697 |
my $loadHasSSCell = $self->_TableLoader('HasSSCell', $self->PrimaryOnly); |
my $loadParticipatesIn = $self->_TableLoader('ParticipatesIn'); |
698 |
my $loadRoleSubset = $self->_TableLoader('RoleSubset', $self->PrimaryOnly); |
my $loadHasSSCell = $self->_TableLoader('HasSSCell'); |
699 |
my $loadGenomeSubset = $self->_TableLoader('GenomeSubset', $self->PrimaryOnly); |
my $loadRoleSubset = $self->_TableLoader('RoleSubset'); |
700 |
my $loadConsistsOfRoles = $self->_TableLoader('ConsistsOfRoles', $self->PrimaryOnly); |
my $loadGenomeSubset = $self->_TableLoader('GenomeSubset'); |
701 |
my $loadConsistsOfGenomes = $self->_TableLoader('ConsistsOfGenomes', $self->PrimaryOnly); |
my $loadConsistsOfRoles = $self->_TableLoader('ConsistsOfRoles'); |
702 |
my $loadHasRoleSubset = $self->_TableLoader('HasRoleSubset', $self->PrimaryOnly); |
my $loadConsistsOfGenomes = $self->_TableLoader('ConsistsOfGenomes'); |
703 |
my $loadHasGenomeSubset = $self->_TableLoader('HasGenomeSubset', $self->PrimaryOnly); |
my $loadHasRoleSubset = $self->_TableLoader('HasRoleSubset'); |
704 |
my $loadSubsystemClass = $self->_TableLoader('SubsystemClass', $self->PrimaryOnly); |
my $loadHasGenomeSubset = $self->_TableLoader('HasGenomeSubset'); |
705 |
|
my $loadSubsystemClass = $self->_TableLoader('SubsystemClass'); |
706 |
if ($self->{options}->{loadOnly}) { |
if ($self->{options}->{loadOnly}) { |
707 |
Trace("Loading from existing files.") if T(2); |
Trace("Loading from existing files.") if T(2); |
708 |
} else { |
} else { |
709 |
Trace("Generating subsystem data.") if T(2); |
Trace("Generating subsystem data.") if T(2); |
710 |
# This hash will contain the role for each EC. When we're done, this |
# This hash will contain the roles for each EC. When we're done, this |
711 |
# information will be used to generate the Catalyzes table. |
# information will be used to generate the Catalyzes table. |
712 |
my %ecToRoles = (); |
my %ecToRoles = (); |
713 |
# Loop through the subsystems. Our first task will be to create the |
# Loop through the subsystems. Our first task will be to create the |
721 |
# Get the subsystem object. |
# Get the subsystem object. |
722 |
my $sub = $fig->get_subsystem($subsysID); |
my $sub = $fig->get_subsystem($subsysID); |
723 |
# Only proceed if the subsystem has a spreadsheet. |
# Only proceed if the subsystem has a spreadsheet. |
724 |
if (! $sub->{empty_ss}) { |
if (defined($sub) && ! $sub->{empty_ss}) { |
725 |
Trace("Creating subsystem $subsysID.") if T(3); |
Trace("Creating subsystem $subsysID.") if T(3); |
726 |
$loadSubsystem->Add("subsystemIn"); |
$loadSubsystem->Add("subsystemIn"); |
727 |
# Create the subsystem record. |
# Create the subsystem record. |
728 |
my $curator = $sub->get_curator(); |
my $curator = $sub->get_curator(); |
729 |
my $notes = $sub->get_notes(); |
my $notes = $sub->get_notes(); |
730 |
$loadSubsystem->Put($subsysID, $curator, $notes); |
$loadSubsystem->Put($subsysID, $curator, $notes); |
731 |
my $class = $fig->subsystem_classification($subsysID); |
# Now for the classification string. This comes back as a list |
732 |
if ($class) { |
# reference and we convert it to a space-delimited string. |
733 |
$loadSubsystemClass->Put($subsysID, $class); |
my $classList = $fig->subsystem_classification($subsysID); |
734 |
} |
my $classString = join($FIG_Config::splitter, grep { $_ } @$classList); |
735 |
|
$loadSubsystemClass->Put($subsysID, $classString); |
736 |
# Connect it to its roles. Each role is a column in the subsystem spreadsheet. |
# Connect it to its roles. Each role is a column in the subsystem spreadsheet. |
737 |
for (my $col = 0; defined($roleID = $sub->get_role($col)); $col++) { |
for (my $col = 0; defined($roleID = $sub->get_role($col)); $col++) { |
738 |
|
# Get the role's abbreviation. |
739 |
|
my $abbr = $sub->get_role_abbr($col); |
740 |
# Connect to this role. |
# Connect to this role. |
741 |
$loadOccursInSubsystem->Add("roleIn"); |
$loadOccursInSubsystem->Add("roleIn"); |
742 |
$loadOccursInSubsystem->Put($roleID, $subsysID, $col); |
$loadOccursInSubsystem->Put($roleID, $subsysID, $abbr, $col); |
743 |
# If it's a new role, add it to the role table. |
# If it's a new role, add it to the role table. |
744 |
if (! exists $roleData{$roleID}) { |
if (! exists $roleData{$roleID}) { |
745 |
# Get the role's abbreviation. |
# Get the role's abbreviation. |
|
my $abbr = $sub->get_role_abbr($col); |
|
746 |
# Add the role. |
# Add the role. |
747 |
$loadRole->Put($roleID, $abbr); |
$loadRole->Put($roleID); |
748 |
$roleData{$roleID} = 1; |
$roleData{$roleID} = 1; |
749 |
# Check for an EC number. |
# Check for an EC number. |
750 |
if ($roleID =~ /\(EC ([^.]+\.[^.]+\.[^.]+\.[^)]+)\)\s*$/) { |
if ($roleID =~ /\(EC (\d+\.\d+\.\d+\.\d+)\s*\)\s*$/) { |
751 |
my $ec = $1; |
my $ec = $1; |
752 |
$loadRoleEC->Put($roleID, $ec); |
$loadIsIdentifiedByEC->Put($roleID, $ec); |
753 |
$ecToRoles{$ec} = $roleID; |
# Check to see if this is our first encounter with this EC. |
754 |
|
if (exists $ecToRoles{$ec}) { |
755 |
|
# No, so just add this role to the EC list. |
756 |
|
push @{$ecToRoles{$ec}}, $roleID; |
757 |
|
} else { |
758 |
|
# Output this EC. |
759 |
|
$loadRoleEC->Put($ec); |
760 |
|
# Create its role list. |
761 |
|
$ecToRoles{$ec} = [$roleID]; |
762 |
|
} |
763 |
} |
} |
764 |
} |
} |
765 |
} |
} |
872 |
# Now we need to link all the map's roles to it. |
# Now we need to link all the map's roles to it. |
873 |
# A hash is used to prevent duplicates. |
# A hash is used to prevent duplicates. |
874 |
my %roleHash = (); |
my %roleHash = (); |
875 |
for my $role ($fig->map_to_ecs($map)) { |
for my $ec ($fig->map_to_ecs($map)) { |
876 |
if (exists $ecToRoles{$role} && ! $roleHash{$role}) { |
if (exists $ecToRoles{$ec}) { |
877 |
$loadRoleOccursIn->Put($ecToRoles{$role}, $map); |
for my $role (@{$ecToRoles{$ec}}) { |
878 |
|
if (! $roleHash{$role}) { |
879 |
|
$loadRoleOccursIn->Put($role, $map); |
880 |
$roleHash{$role} = 1; |
$roleHash{$role} = 1; |
881 |
} |
} |
882 |
} |
} |
883 |
} |
} |
884 |
|
} |
885 |
|
} |
886 |
# Before we leave, we must create the Catalyzes table. We start with the reactions, |
# Before we leave, we must create the Catalyzes table. We start with the reactions, |
887 |
# then use the "ecToRoles" table to convert EC numbers to role IDs. |
# then use the "ecToRoles" table to convert EC numbers to role IDs. |
888 |
my @reactions = $fig->all_reactions(); |
my @reactions = $fig->all_reactions(); |
889 |
for my $reactionID (@reactions) { |
for my $reactionID (@reactions) { |
890 |
# Get this reaction's list of roles. The results will be EC numbers. |
# Get this reaction's list of roles. The results will be EC numbers. |
891 |
my @roles = $fig->catalyzed_by($reactionID); |
my @ecs = $fig->catalyzed_by($reactionID); |
892 |
# Loop through the roles, creating catalyzation records. |
# Loop through the roles, creating catalyzation records. |
893 |
for my $thisRole (@roles) { |
for my $thisEC (@ecs) { |
894 |
if (exists $ecToRoles{$thisRole}) { |
if (exists $ecToRoles{$thisEC}) { |
895 |
$loadCatalyzes->Put($ecToRoles{$thisRole}, $reactionID); |
for my $thisRole (@{$ecToRoles{$thisEC}}) { |
896 |
|
$loadCatalyzes->Put($thisRole, $reactionID); |
897 |
|
} |
898 |
} |
} |
899 |
} |
} |
900 |
} |
} |
942 |
my $genomeHash = $self->{genomes}; |
my $genomeHash = $self->{genomes}; |
943 |
# Create load objects for each of the tables we're loading. |
# Create load objects for each of the tables we're loading. |
944 |
my $loadProperty = $self->_TableLoader('Property'); |
my $loadProperty = $self->_TableLoader('Property'); |
945 |
my $loadHasProperty = $self->_TableLoader('HasProperty', $self->PrimaryOnly); |
my $loadHasProperty = $self->_TableLoader('HasProperty'); |
946 |
if ($self->{options}->{loadOnly}) { |
if ($self->{options}->{loadOnly}) { |
947 |
Trace("Loading from existing files.") if T(2); |
Trace("Loading from existing files.") if T(2); |
948 |
} else { |
} else { |
950 |
# Create a hash for storing property IDs. |
# Create a hash for storing property IDs. |
951 |
my %propertyKeys = (); |
my %propertyKeys = (); |
952 |
my $nextID = 1; |
my $nextID = 1; |
953 |
|
# Get the attributes we intend to store in the property table. |
954 |
|
my $propKeys = $self->{propKeys}; |
955 |
# Loop through the genomes. |
# Loop through the genomes. |
956 |
for my $genomeID (keys %{$genomeHash}) { |
for my $genomeID (sort keys %{$genomeHash}) { |
957 |
$loadProperty->Add("genomeIn"); |
$loadProperty->Add("genomeIn"); |
958 |
Trace("Generating properties for $genomeID.") if T(3); |
Trace("Generating properties for $genomeID.") if T(3); |
959 |
# Get the genome's features. The feature ID is the first field in the |
# Initialize a counter. |
|
# tuples returned by "all_features_detailed". We use "all_features_detailed" |
|
|
# rather than "all_features" because we want all features regardless of type. |
|
|
my @features = map { $_->[0] } @{$fig->all_features_detailed($genomeID)}; |
|
|
my $featureCount = 0; |
|
960 |
my $propertyCount = 0; |
my $propertyCount = 0; |
961 |
# Loop through the features, creating HasProperty records. |
# Get the properties for this genome's features. |
962 |
for my $fid (@features) { |
my @attributes = $fig->get_attributes("fig|$genomeID%", $propKeys); |
963 |
# Get all attributes for this feature. We do this one feature at a time |
Trace("Property list built for $genomeID.") if T(3); |
964 |
# to insure we do not get any genome attributes. |
# Loop through the results, creating HasProperty records. |
965 |
my @attributeList = $fig->get_attributes($fid, '', '', ''); |
for my $attributeData (@attributes) { |
966 |
if (scalar @attributeList) { |
# Pull apart the attribute tuple. |
967 |
$featureCount++; |
my ($fid, $key, $value, $url) = @{$attributeData}; |
|
} |
|
|
# Loop through the attributes. |
|
|
for my $tuple (@attributeList) { |
|
|
$propertyCount++; |
|
|
# Get this attribute value's data. Note that we throw away the FID, |
|
|
# since it will always be the same as the value if "$fid". |
|
|
my (undef, $key, $value, $url) = @{$tuple}; |
|
968 |
# Concatenate the key and value and check the "propertyKeys" hash to |
# Concatenate the key and value and check the "propertyKeys" hash to |
969 |
# see if we already have an ID for it. We use a tab for the separator |
# see if we already have an ID for it. We use a tab for the separator |
970 |
# character. |
# character. |
982 |
# Create the HasProperty entry for this feature/property association. |
# Create the HasProperty entry for this feature/property association. |
983 |
$loadHasProperty->Put($fid, $propertyID, $url); |
$loadHasProperty->Put($fid, $propertyID, $url); |
984 |
} |
} |
|
} |
|
985 |
# Update the statistics. |
# Update the statistics. |
986 |
Trace("$propertyCount attributes processed for $featureCount features.") if T(3); |
Trace("$propertyCount attributes processed.") if T(3); |
|
$loadHasProperty->Add("featuresIn", $featureCount); |
|
987 |
$loadHasProperty->Add("propertiesIn", $propertyCount); |
$loadHasProperty->Add("propertiesIn", $propertyCount); |
988 |
} |
} |
989 |
} |
} |
1028 |
my $genomeHash = $self->{genomes}; |
my $genomeHash = $self->{genomes}; |
1029 |
# Create load objects for each of the tables we're loading. |
# Create load objects for each of the tables we're loading. |
1030 |
my $loadAnnotation = $self->_TableLoader('Annotation'); |
my $loadAnnotation = $self->_TableLoader('Annotation'); |
1031 |
my $loadIsTargetOfAnnotation = $self->_TableLoader('IsTargetOfAnnotation', $self->PrimaryOnly); |
my $loadIsTargetOfAnnotation = $self->_TableLoader('IsTargetOfAnnotation'); |
1032 |
my $loadSproutUser = $self->_TableLoader('SproutUser', $self->PrimaryOnly); |
my $loadSproutUser = $self->_TableLoader('SproutUser'); |
1033 |
my $loadUserAccess = $self->_TableLoader('UserAccess', $self->PrimaryOnly); |
my $loadUserAccess = $self->_TableLoader('UserAccess'); |
1034 |
my $loadMadeAnnotation = $self->_TableLoader('MadeAnnotation', $self->PrimaryOnly); |
my $loadMadeAnnotation = $self->_TableLoader('MadeAnnotation'); |
1035 |
if ($self->{options}->{loadOnly}) { |
if ($self->{options}->{loadOnly}) { |
1036 |
Trace("Loading from existing files.") if T(2); |
Trace("Loading from existing files.") if T(2); |
1037 |
} else { |
} else { |
1135 |
# Get the genome hash. |
# Get the genome hash. |
1136 |
my $genomeHash = $self->{genomes}; |
my $genomeHash = $self->{genomes}; |
1137 |
# Create load objects for each of the tables we're loading. |
# Create load objects for each of the tables we're loading. |
1138 |
my $loadComesFrom = $self->_TableLoader('ComesFrom', $self->PrimaryOnly); |
my $loadComesFrom = $self->_TableLoader('ComesFrom'); |
1139 |
my $loadSource = $self->_TableLoader('Source'); |
my $loadSource = $self->_TableLoader('Source'); |
1140 |
my $loadSourceURL = $self->_TableLoader('SourceURL'); |
my $loadSourceURL = $self->_TableLoader('SourceURL'); |
1141 |
if ($self->{options}->{loadOnly}) { |
if ($self->{options}->{loadOnly}) { |
1272 |
Compound |
Compound |
1273 |
CompoundName |
CompoundName |
1274 |
CompoundCAS |
CompoundCAS |
1275 |
|
IsIdentifiedByCAS |
1276 |
|
HasCompoundName |
1277 |
IsAComponentOf |
IsAComponentOf |
1278 |
|
|
1279 |
This method proceeds reaction by reaction rather than genome by genome. |
This method proceeds reaction by reaction rather than genome by genome. |
1295 |
my $fig = $self->{fig}; |
my $fig = $self->{fig}; |
1296 |
# Create load objects for each of the tables we're loading. |
# Create load objects for each of the tables we're loading. |
1297 |
my $loadReaction = $self->_TableLoader('Reaction'); |
my $loadReaction = $self->_TableLoader('Reaction'); |
1298 |
my $loadReactionURL = $self->_TableLoader('ReactionURL', $self->PrimaryOnly); |
my $loadReactionURL = $self->_TableLoader('ReactionURL'); |
1299 |
my $loadCompound = $self->_TableLoader('Compound', $self->PrimaryOnly); |
my $loadCompound = $self->_TableLoader('Compound'); |
1300 |
my $loadCompoundName = $self->_TableLoader('CompoundName', $self->PrimaryOnly); |
my $loadCompoundName = $self->_TableLoader('CompoundName'); |
1301 |
my $loadCompoundCAS = $self->_TableLoader('CompoundCAS', $self->PrimaryOnly); |
my $loadCompoundCAS = $self->_TableLoader('CompoundCAS'); |
1302 |
my $loadIsAComponentOf = $self->_TableLoader('IsAComponentOf', $self->PrimaryOnly); |
my $loadIsAComponentOf = $self->_TableLoader('IsAComponentOf'); |
1303 |
|
my $loadIsIdentifiedByCAS = $self->_TableLoader('IsIdentifiedByCAS'); |
1304 |
|
my $loadHasCompoundName = $self->_TableLoader('HasCompoundName'); |
1305 |
if ($self->{options}->{loadOnly}) { |
if ($self->{options}->{loadOnly}) { |
1306 |
Trace("Loading from existing files.") if T(2); |
Trace("Loading from existing files.") if T(2); |
1307 |
} else { |
} else { |
1308 |
Trace("Generating annotation data.") if T(2); |
Trace("Generating reaction data.") if T(2); |
1309 |
|
# We need some hashes to prevent duplicates. |
1310 |
|
my %compoundNames = (); |
1311 |
|
my %compoundCASes = (); |
1312 |
# First we create the compounds. |
# First we create the compounds. |
1313 |
my @compounds = $fig->all_compounds(); |
my @compounds = $fig->all_compounds(); |
1314 |
for my $cid (@compounds) { |
for my $cid (@compounds) { |
1317 |
# Each name will be given a priority number, starting with 1. |
# Each name will be given a priority number, starting with 1. |
1318 |
my $prio = 1; |
my $prio = 1; |
1319 |
for my $name (@names) { |
for my $name (@names) { |
1320 |
$loadCompoundName->Put($cid, $name, $prio++); |
if (! exists $compoundNames{$name}) { |
1321 |
|
$loadCompoundName->Put($name); |
1322 |
|
$compoundNames{$name} = 1; |
1323 |
|
} |
1324 |
|
$loadHasCompoundName->Put($cid, $name, $prio++); |
1325 |
} |
} |
1326 |
# Create the main compound record. Note that the first name |
# Create the main compound record. Note that the first name |
1327 |
# becomes the label. |
# becomes the label. |
1330 |
# Check for a CAS ID. |
# Check for a CAS ID. |
1331 |
my $cas = $fig->cas($cid); |
my $cas = $fig->cas($cid); |
1332 |
if ($cas) { |
if ($cas) { |
1333 |
$loadCompoundCAS->Put($cid, $cas); |
$loadIsIdentifiedByCAS->Put($cid, $cas); |
1334 |
|
if (! exists $compoundCASes{$cas}) { |
1335 |
|
$loadCompoundCAS->Put($cas); |
1336 |
|
$compoundCASes{$cas} = 1; |
1337 |
|
} |
1338 |
} |
} |
1339 |
} |
} |
1340 |
# All the compounds are set up, so we need to loop through the reactions next. First, |
# All the compounds are set up, so we need to loop through the reactions next. First, |
1371 |
return $retVal; |
return $retVal; |
1372 |
} |
} |
1373 |
|
|
|
=head3 LoadGroupData |
|
|
|
|
|
C<< my $stats = $spl->LoadGroupData(); >> |
|
|
|
|
|
Load the genome Groups into Sprout. |
|
|
|
|
|
The following relations are loaded by this method. |
|
|
|
|
|
GenomeGroups |
|
|
|
|
|
There is no direct support for genome groups in FIG, so we access the SEED |
|
|
files directly. |
|
|
|
|
|
=over 4 |
|
|
|
|
|
=item RETURNS |
|
|
|
|
|
Returns a statistics object for the loads. |
|
|
|
|
|
=back |
|
|
|
|
|
=cut |
|
|
#: Return Type $%; |
|
|
sub LoadGroupData { |
|
|
# Get this object instance. |
|
|
my ($self) = @_; |
|
|
# Get the FIG object. |
|
|
my $fig = $self->{fig}; |
|
|
# Get the genome hash. |
|
|
my $genomeHash = $self->{genomes}; |
|
|
# Create a load object for the table we're loading. |
|
|
my $loadGenomeGroups = $self->_TableLoader('GenomeGroups'); |
|
|
if ($self->{options}->{loadOnly}) { |
|
|
Trace("Loading from existing files.") if T(2); |
|
|
} else { |
|
|
Trace("Generating group data.") if T(2); |
|
|
# Loop through the genomes. |
|
|
my $line; |
|
|
for my $genomeID (keys %{$genomeHash}) { |
|
|
Trace("Processing $genomeID.") if T(3); |
|
|
# Open the NMPDR group file for this genome. |
|
|
if (open(TMP, "<$FIG_Config::organisms/$genomeID/NMPDR") && |
|
|
defined($line = <TMP>)) { |
|
|
# Clean the line ending. |
|
|
chomp $line; |
|
|
# Add the group to the table. Note that there can only be one group |
|
|
# per genome. |
|
|
$loadGenomeGroups->Put($genomeID, $line); |
|
|
} |
|
|
close TMP; |
|
|
} |
|
|
} |
|
|
# Finish the load. |
|
|
my $retVal = $self->_FinishAll(); |
|
|
return $retVal; |
|
|
} |
|
|
|
|
1374 |
=head3 LoadSynonymData |
=head3 LoadSynonymData |
1375 |
|
|
1376 |
C<< my $stats = $spl->LoadSynonymData(); >> |
C<< my $stats = $spl->LoadSynonymData(); >> |
1412 |
Trace("Generating synonym group data.") if T(2); |
Trace("Generating synonym group data.") if T(2); |
1413 |
# Get the database handle. |
# Get the database handle. |
1414 |
my $dbh = $fig->db_handle(); |
my $dbh = $fig->db_handle(); |
1415 |
# Ask for the synonyms. |
# Ask for the synonyms. Note that "maps_to" is a group name, and "syn_id" is a PEG ID or alias. |
1416 |
my $sth = $dbh->prepare_command("SELECT maps_to, syn_id FROM peg_synonyms ORDER BY maps_to"); |
my $sth = $dbh->prepare_command("SELECT maps_to, syn_id FROM peg_synonyms ORDER BY maps_to"); |
1417 |
my $result = $sth->execute(); |
my $result = $sth->execute(); |
1418 |
if (! defined($result)) { |
if (! defined($result)) { |
1424 |
my $featureCount = 0; |
my $featureCount = 0; |
1425 |
# Loop through the synonym/peg pairs. |
# Loop through the synonym/peg pairs. |
1426 |
while (my @row = $sth->fetchrow()) { |
while (my @row = $sth->fetchrow()) { |
1427 |
# Get the synonym ID and feature ID. |
# Get the synonym group ID and feature ID. |
1428 |
my ($syn_id, $peg) = @row; |
my ($syn_id, $peg) = @row; |
1429 |
# Insure it's for one of our genomes. |
# Insure it's for one of our genomes. |
1430 |
my $genomeID = FIG::genome_of($peg); |
my $genomeID = FIG::genome_of($peg); |
1460 |
The following relations are loaded by this method. |
The following relations are loaded by this method. |
1461 |
|
|
1462 |
Family |
Family |
1463 |
ContainsFeature |
IsFamilyForFeature |
1464 |
|
|
1465 |
The source information for these relations is taken from the C<families_for_protein>, |
The source information for these relations is taken from the C<families_for_protein>, |
1466 |
C<family_function>, and C<sz_family> methods of the B<FIG> object. |
C<family_function>, and C<sz_family> methods of the B<FIG> object. |
1484 |
my $genomeHash = $self->{genomes}; |
my $genomeHash = $self->{genomes}; |
1485 |
# Create load objects for the tables we're loading. |
# Create load objects for the tables we're loading. |
1486 |
my $loadFamily = $self->_TableLoader('Family'); |
my $loadFamily = $self->_TableLoader('Family'); |
1487 |
my $loadContainsFeature = $self->_TableLoader('ContainsFeature'); |
my $loadIsFamilyForFeature = $self->_TableLoader('IsFamilyForFeature'); |
1488 |
if ($self->{options}->{loadOnly}) { |
if ($self->{options}->{loadOnly}) { |
1489 |
Trace("Loading from existing files.") if T(2); |
Trace("Loading from existing files.") if T(2); |
1490 |
} else { |
} else { |
1496 |
Trace("Processing features for $genomeID.") if T(2); |
Trace("Processing features for $genomeID.") if T(2); |
1497 |
# Loop through this genome's PEGs. |
# Loop through this genome's PEGs. |
1498 |
for my $fid ($fig->all_features($genomeID, "peg")) { |
for my $fid ($fig->all_features($genomeID, "peg")) { |
1499 |
$loadContainsFeature->Add("features", 1); |
$loadIsFamilyForFeature->Add("features", 1); |
1500 |
# Get this feature's families. |
# Get this feature's families. |
1501 |
my @families = $fig->families_for_protein($fid); |
my @families = $fig->families_for_protein($fid); |
1502 |
# Loop through the families, connecting them to the feature. |
# Loop through the families, connecting them to the feature. |
1503 |
for my $family (@families) { |
for my $family (@families) { |
1504 |
$loadContainsFeature->Put($family, $fid); |
$loadIsFamilyForFeature->Put($family, $fid); |
1505 |
# If this is a new family, create a record for it. |
# If this is a new family, create a record for it. |
1506 |
if (! exists $familyHash{$family}) { |
if (! exists $familyHash{$family}) { |
1507 |
|
$familyHash{$family} = 1; |
1508 |
$loadFamily->Add("families", 1); |
$loadFamily->Add("families", 1); |
1509 |
my $size = $fig->sz_family($family); |
my $size = $fig->sz_family($family); |
1510 |
my $func = $fig->family_function($family); |
my $func = $fig->family_function($family); |
1519 |
return $retVal; |
return $retVal; |
1520 |
} |
} |
1521 |
|
|
1522 |
|
=head3 LoadDrugData |
1523 |
|
|
1524 |
|
C<< my $stats = $spl->LoadDrugData(); >> |
1525 |
|
|
1526 |
|
Load the drug target data into Sprout. |
1527 |
|
|
1528 |
|
The following relations are loaded by this method. |
1529 |
|
|
1530 |
|
PDB |
1531 |
|
DocksWith |
1532 |
|
IsProteinForFeature |
1533 |
|
Ligand |
1534 |
|
|
1535 |
|
The source information for these relations is taken from attributes. The |
1536 |
|
C<PDB> attribute links a PDB to a feature, and is used to build B<IsProteinForFeature>. |
1537 |
|
The C<zinc_name> attribute describes the ligands. The C<docking_results> |
1538 |
|
attribute contains the information for the B<DocksWith> relationship. It is |
1539 |
|
expected that additional attributes and tables will be added in the future. |
1540 |
|
|
1541 |
|
=over 4 |
1542 |
|
|
1543 |
|
=item RETURNS |
1544 |
|
|
1545 |
|
Returns a statistics object for the loads. |
1546 |
|
|
1547 |
|
=back |
1548 |
|
|
1549 |
|
=cut |
1550 |
|
#: Return Type $%; |
1551 |
|
sub LoadDrugData { |
1552 |
|
# Get this object instance. |
1553 |
|
my ($self) = @_; |
1554 |
|
# Get the FIG object. |
1555 |
|
my $fig = $self->{fig}; |
1556 |
|
# Get the genome hash. |
1557 |
|
my $genomeHash = $self->{genomes}; |
1558 |
|
# Create load objects for the tables we're loading. |
1559 |
|
my $loadPDB = $self->_TableLoader('PDB'); |
1560 |
|
my $loadLigand = $self->_TableLoader('Ligand'); |
1561 |
|
my $loadIsProteinForFeature = $self->_TableLoader('IsProteinForFeature'); |
1562 |
|
my $loadDocksWith = $self->_TableLoader('DocksWith'); |
1563 |
|
if ($self->{options}->{loadOnly}) { |
1564 |
|
Trace("Loading from existing files.") if T(2); |
1565 |
|
} else { |
1566 |
|
Trace("Generating drug target data.") if T(2); |
1567 |
|
# First comes the "DocksWith" relationship. This will give us a list of PDBs. |
1568 |
|
# We can also encounter PDBs when we process "IsProteinForFeature". To manage |
1569 |
|
# this process, PDB information is collected in a hash table and then |
1570 |
|
# unspooled after both relationships are created. |
1571 |
|
my %pdbHash = (); |
1572 |
|
Trace("Generating docking data.") if T(2); |
1573 |
|
# Get all the docking data. This may cause problems if there are too many PDBs, |
1574 |
|
# at which point we'll need another algorithm. The indicator that this is |
1575 |
|
# happening will be a timeout error in the next statement. |
1576 |
|
my @dockData = $fig->query_attributes('$key = ? AND $value < ?', |
1577 |
|
['docking_results', $FIG_Config::dockLimit]); |
1578 |
|
Trace(scalar(@dockData) . " rows of docking data found.") if T(3); |
1579 |
|
for my $dockData (@dockData) { |
1580 |
|
# Get the docking data components. |
1581 |
|
my ($pdbID, $docking_key, @valueData) = @{$dockData}; |
1582 |
|
# Fix the PDB ID. It's supposed to be lower-case, but this does not always happen. |
1583 |
|
$pdbID = lc $pdbID; |
1584 |
|
# Strip off the object type. |
1585 |
|
$pdbID =~ s/pdb://; |
1586 |
|
# Extract the ZINC ID from the docking key. Note that there are two possible |
1587 |
|
# formats. |
1588 |
|
my (undef, $zinc_id) = $docking_key =~ /^docking_results::(ZINC)?(\d+)$/; |
1589 |
|
if (! $zinc_id) { |
1590 |
|
Trace("Invalid docking result key $docking_key for $pdbID.") if T(0); |
1591 |
|
$loadDocksWith->Add("errors"); |
1592 |
|
} else { |
1593 |
|
# Get the pieces of the value and parse the energy. |
1594 |
|
# Note that we don't care about the rank, since |
1595 |
|
# we can sort on the energy level itself in our database. |
1596 |
|
my ($energy, $tool, $type) = @valueData; |
1597 |
|
my ($rank, $total, $vanderwaals, $electrostatic) = split /\s*;\s*/, $energy; |
1598 |
|
# Ignore predicted results. |
1599 |
|
if ($type ne "Predicted") { |
1600 |
|
# Count this docking result. |
1601 |
|
if (! exists $pdbHash{$pdbID}) { |
1602 |
|
$pdbHash{$pdbID} = 1; |
1603 |
|
} else { |
1604 |
|
$pdbHash{$pdbID}++; |
1605 |
|
} |
1606 |
|
# Write the result to the output. |
1607 |
|
$loadDocksWith->Put($pdbID, $zinc_id, $electrostatic, $type, $tool, |
1608 |
|
$total, $vanderwaals); |
1609 |
|
} |
1610 |
|
} |
1611 |
|
} |
1612 |
|
Trace("Connecting features.") if T(2); |
1613 |
|
# Loop through the genomes. |
1614 |
|
for my $genome (sort keys %{$genomeHash}) { |
1615 |
|
Trace("Generating PDBs for $genome.") if T(3); |
1616 |
|
# Get all of the PDBs that BLAST against this genome's features. |
1617 |
|
my @attributeData = $fig->get_attributes("fig|$genome%", 'PDB::%'); |
1618 |
|
for my $pdbData (@attributeData) { |
1619 |
|
# The PDB ID is coded as a subkey. |
1620 |
|
if ($pdbData->[1] !~ /PDB::(.+)/i) { |
1621 |
|
Trace("Invalid PDB ID \"$pdbData->[1]\" in attribute table.") if T(0); |
1622 |
|
$loadPDB->Add("errors"); |
1623 |
|
} else { |
1624 |
|
my $pdbID = $1; |
1625 |
|
# Insure the PDB is in the hash. |
1626 |
|
if (! exists $pdbHash{$pdbID}) { |
1627 |
|
$pdbHash{$pdbID} = 0; |
1628 |
|
} |
1629 |
|
# The score and locations are coded in the attribute value. |
1630 |
|
if ($pdbData->[2] !~ /^([^;]+)(.*)$/) { |
1631 |
|
Trace("Invalid PDB data for $pdbID and feature $pdbData->[0].") if T(0); |
1632 |
|
$loadIsProteinForFeature->Add("errors"); |
1633 |
|
} else { |
1634 |
|
my ($score, $locData) = ($1,$2); |
1635 |
|
# The location data may not be present, so we have to start with some |
1636 |
|
# defaults and then check. |
1637 |
|
my ($start, $end) = (1, 0); |
1638 |
|
if ($locData) { |
1639 |
|
$locData =~ /(\d+)-(\d+)/; |
1640 |
|
$start = $1; |
1641 |
|
$end = $2; |
1642 |
|
} |
1643 |
|
# If we still don't have the end location, compute it from |
1644 |
|
# the feature length. |
1645 |
|
if (! $end) { |
1646 |
|
# Most features have one location, but we do a list iteration |
1647 |
|
# just in case. |
1648 |
|
my @locations = $fig->feature_location($pdbData->[0]); |
1649 |
|
$end = 0; |
1650 |
|
for my $loc (@locations) { |
1651 |
|
my $locObject = BasicLocation->new($loc); |
1652 |
|
$end += $locObject->Length; |
1653 |
|
} |
1654 |
|
} |
1655 |
|
# Decode the score. |
1656 |
|
my $realScore = FIGRules::DecodeScore($score); |
1657 |
|
# Connect the PDB to the feature. |
1658 |
|
$loadIsProteinForFeature->Put($pdbData->[0], $pdbID, $start, $realScore, $end); |
1659 |
|
} |
1660 |
|
} |
1661 |
|
} |
1662 |
|
} |
1663 |
|
# We've got all our PDBs now, so we unspool them from the hash. |
1664 |
|
Trace("Generating PDBs. " . scalar(keys %pdbHash) . " found.") if T(2); |
1665 |
|
my $count = 0; |
1666 |
|
for my $pdbID (sort keys %pdbHash) { |
1667 |
|
$loadPDB->Put($pdbID, $pdbHash{$pdbID}); |
1668 |
|
$count++; |
1669 |
|
Trace("$count PDBs processed.") if T(3) && ($count % 500 == 0); |
1670 |
|
} |
1671 |
|
# Finally we create the ligand table. This information can be found in the |
1672 |
|
# zinc_name attribute. |
1673 |
|
Trace("Loading ligands.") if T(2); |
1674 |
|
# The ligand list is huge, so we have to get it in pieces. We also have to check for duplicates. |
1675 |
|
my $last_zinc_id = ""; |
1676 |
|
my $zinc_id = ""; |
1677 |
|
my $done = 0; |
1678 |
|
while (! $done) { |
1679 |
|
# Get the next 10000 ligands. We insist that the object ID is greater than |
1680 |
|
# the last ID we processed. |
1681 |
|
Trace("Loading batch starting with ZINC:$zinc_id.") if T(3); |
1682 |
|
my @attributeData = $fig->query_attributes('$object > ? AND $key = ? ORDER BY $object LIMIT 10000', |
1683 |
|
["ZINC:$zinc_id", "zinc_name"]); |
1684 |
|
Trace(scalar(@attributeData) . " attribute rows returned.") if T(3); |
1685 |
|
if (! @attributeData) { |
1686 |
|
# Here there are no attributes left, so we quit the loop. |
1687 |
|
$done = 1; |
1688 |
|
} else { |
1689 |
|
# Process the attribute data we've received. |
1690 |
|
for my $zinc_data (@attributeData) { |
1691 |
|
# The ZINC ID is found in the first return column, prefixed with the word ZINC. |
1692 |
|
if ($zinc_data->[0] =~ /^ZINC:(\d+)$/) { |
1693 |
|
$zinc_id = $1; |
1694 |
|
# Check for a duplicate. |
1695 |
|
if ($zinc_id eq $last_zinc_id) { |
1696 |
|
$loadLigand->Add("duplicate"); |
1697 |
|
} else { |
1698 |
|
# Here it's safe to output the ligand. The ligand name is the attribute value |
1699 |
|
# (third column in the row). |
1700 |
|
$loadLigand->Put($zinc_id, $zinc_data->[2]); |
1701 |
|
# Insure we don't try to add this ID again. |
1702 |
|
$last_zinc_id = $zinc_id; |
1703 |
|
} |
1704 |
|
} else { |
1705 |
|
Trace("Invalid zinc ID \"$zinc_data->[0]\" in attribute table.") if T(0); |
1706 |
|
$loadLigand->Add("errors"); |
1707 |
|
} |
1708 |
|
} |
1709 |
|
} |
1710 |
|
} |
1711 |
|
Trace("Ligands loaded.") if T(2); |
1712 |
|
} |
1713 |
|
# Finish the load. |
1714 |
|
my $retVal = $self->_FinishAll(); |
1715 |
|
return $retVal; |
1716 |
|
} |
1717 |
|
|
1718 |
|
|
1719 |
=head2 Internal Utility Methods |
=head2 Internal Utility Methods |
1720 |
|
|
1721 |
|
=head3 SpecialAttribute |
1722 |
|
|
1723 |
|
C<< my $count = SproutLoad::SpecialAttribute($id, \@attributes, $idxMatch, \@idxValues, $pattern, $loader); >> |
1724 |
|
|
1725 |
|
Look for special attributes of a given type. A special attribute is found by comparing one of |
1726 |
|
the columns of the incoming attribute list to a search pattern. If a match is found, then |
1727 |
|
a set of columns is put into an output table connected to the specified ID. |
1728 |
|
|
1729 |
|
For example, when processing features, the attribute list we look at has three columns: attribute |
1730 |
|
name, attribute value, and attribute value HTML. The IEDB attribute exists if the attribute name |
1731 |
|
begins with C<iedb_>. The call signature is therefore |
1732 |
|
|
1733 |
|
my $found = SpecialAttribute($fid, \@attributeList, 0, [0,2], '^iedb_', $loadFeatureIEDB); |
1734 |
|
|
1735 |
|
The pattern is matched against column 0, and if we have a match, then column 2's value is put |
1736 |
|
to the output along with the specified feature ID. |
1737 |
|
|
1738 |
|
=over 4 |
1739 |
|
|
1740 |
|
=item id |
1741 |
|
|
1742 |
|
ID of the object whose special attributes are being loaded. This forms the first column of the |
1743 |
|
output. |
1744 |
|
|
1745 |
|
=item attributes |
1746 |
|
|
1747 |
|
Reference to a list of tuples. |
1748 |
|
|
1749 |
|
=item idxMatch |
1750 |
|
|
1751 |
|
Index in each tuple of the column to be matched against the pattern. If the match is |
1752 |
|
successful, an output record will be generated. |
1753 |
|
|
1754 |
|
=item idxValues |
1755 |
|
|
1756 |
|
Reference to a list containing the indexes in each tuple of the columns to be put as |
1757 |
|
the second column of the output. |
1758 |
|
|
1759 |
|
=item pattern |
1760 |
|
|
1761 |
|
Pattern to be matched against the specified column. The match will be case-insensitive. |
1762 |
|
|
1763 |
|
=item loader |
1764 |
|
|
1765 |
|
An object to which each output record will be put. Usually this is an B<ERDBLoad> object, |
1766 |
|
but technically it could be anything with a C<Put> method. |
1767 |
|
|
1768 |
|
=item RETURN |
1769 |
|
|
1770 |
|
Returns a count of the matches found. |
1771 |
|
|
1772 |
|
=item |
1773 |
|
|
1774 |
|
=back |
1775 |
|
|
1776 |
|
=cut |
1777 |
|
|
1778 |
|
sub SpecialAttribute { |
1779 |
|
# Get the parameters. |
1780 |
|
my ($id, $attributes, $idxMatch, $idxValues, $pattern, $loader) = @_; |
1781 |
|
# Declare the return variable. |
1782 |
|
my $retVal = 0; |
1783 |
|
# Loop through the attribute rows. |
1784 |
|
for my $row (@{$attributes}) { |
1785 |
|
# Check for a match. |
1786 |
|
if ($row->[$idxMatch] =~ m/$pattern/i) { |
1787 |
|
# We have a match, so output a row. This is a bit tricky, since we may |
1788 |
|
# be putting out multiple columns of data from the input. |
1789 |
|
my $value = join(" ", map { $row->[$_] } @{$idxValues}); |
1790 |
|
$loader->Put($id, $value); |
1791 |
|
$retVal++; |
1792 |
|
} |
1793 |
|
} |
1794 |
|
Trace("$retVal special attributes found for $id and loader " . $loader->RelName() . ".") if T(4) && $retVal; |
1795 |
|
# Return the number of matches. |
1796 |
|
return $retVal; |
1797 |
|
} |
1798 |
|
|
1799 |
=head3 TableLoader |
=head3 TableLoader |
1800 |
|
|
1801 |
Create an ERDBLoad object for the specified table. The object is also added to |
Create an ERDBLoad object for the specified table. The object is also added to |
1810 |
|
|
1811 |
Name of the table (relation) being loaded. |
Name of the table (relation) being loaded. |
1812 |
|
|
|
=item ignore |
|
|
|
|
|
TRUE if the table should be ignored entirely, else FALSE. |
|
|
|
|
1813 |
=item RETURN |
=item RETURN |
1814 |
|
|
1815 |
Returns an ERDBLoad object for loading the specified table. |
Returns an ERDBLoad object for loading the specified table. |
1820 |
|
|
1821 |
sub _TableLoader { |
sub _TableLoader { |
1822 |
# Get the parameters. |
# Get the parameters. |
1823 |
my ($self, $tableName, $ignore) = @_; |
my ($self, $tableName) = @_; |
1824 |
# Create the load object. |
# Create the load object. |
1825 |
my $retVal = ERDBLoad->new($self->{erdb}, $tableName, $self->{loadDirectory}, $self->LoadOnly, |
my $retVal = ERDBLoad->new($self->{erdb}, $tableName, $self->{loadDirectory}, $self->LoadOnly); |
|
$ignore); |
|
1826 |
# Cache it in the loader list. |
# Cache it in the loader list. |
1827 |
push @{$self->{loaders}}, $retVal; |
push @{$self->{loaders}}, $retVal; |
1828 |
# Return it to the caller. |
# Return it to the caller. |
1894 |
return $retVal; |
return $retVal; |
1895 |
} |
} |
1896 |
|
|
1897 |
|
=head3 GetGenomeAttributes |
1898 |
|
|
1899 |
|
C<< my $aHashRef = GetGenomeAttributes($fig, $genomeID, \@fids, \@propKeys); >> |
1900 |
|
|
1901 |
|
Return a hash of attributes keyed on feature ID. This method gets all the NMPDR-related |
1902 |
|
attributes for all the features of a genome in a single call, then organizes them into |
1903 |
|
a hash. |
1904 |
|
|
1905 |
|
=over 4 |
1906 |
|
|
1907 |
|
=item fig |
1908 |
|
|
1909 |
|
FIG-like object for accessing attributes. |
1910 |
|
|
1911 |
|
=item genomeID |
1912 |
|
|
1913 |
|
ID of the genome who's attributes are desired. |
1914 |
|
|
1915 |
|
=item fids |
1916 |
|
|
1917 |
|
Reference to a list of the feature IDs whose attributes are to be kept. |
1918 |
|
|
1919 |
|
=item propKeys |
1920 |
|
|
1921 |
|
A list of the keys to retrieve. |
1922 |
|
|
1923 |
|
=item RETURN |
1924 |
|
|
1925 |
|
Returns a reference to a hash. The key of the hash is the feature ID. The value is the |
1926 |
|
reference to a list of the feature's attribute tuples. Each tuple contains the feature ID, |
1927 |
|
the attribute key, and one or more attribute values. |
1928 |
|
|
1929 |
|
=back |
1930 |
|
|
1931 |
|
=cut |
1932 |
|
|
1933 |
|
sub GetGenomeAttributes { |
1934 |
|
# Get the parameters. |
1935 |
|
my ($fig, $genomeID, $fids, $propKeys) = @_; |
1936 |
|
# Declare the return variable. |
1937 |
|
my $retVal = {}; |
1938 |
|
# Initialize the hash. This not only enables us to easily determine which FIDs to |
1939 |
|
# keep, it insures that the caller sees a list reference for every known fid, |
1940 |
|
# simplifying the logic. |
1941 |
|
for my $fid (@{$fids}) { |
1942 |
|
$retVal->{$fid} = []; |
1943 |
|
} |
1944 |
|
# Get the attributes. If ev_code_cron is running, we may get a timeout error, so |
1945 |
|
# an eval is used. |
1946 |
|
my @aList = (); |
1947 |
|
eval { |
1948 |
|
@aList = $fig->get_attributes("fig|$genomeID%", $propKeys); |
1949 |
|
Trace(scalar(@aList) . " attributes returned for genome $genomeID.") if T(3); |
1950 |
|
}; |
1951 |
|
# Check for a problem. |
1952 |
|
if ($@) { |
1953 |
|
Trace("Retrying attributes for $genomeID due to error: $@") if T(1); |
1954 |
|
# Our fallback plan is to process the attributes in blocks of 100. This is much slower, |
1955 |
|
# but allows us to continue processing. |
1956 |
|
my $nFids = scalar @{$fids}; |
1957 |
|
for (my $i = 0; $i < $nFids; $i += 100) { |
1958 |
|
# Determine the index of the last feature ID we'll be specifying on this pass. |
1959 |
|
# Normally it's $i + 99, but if we're close to the end it may be less. |
1960 |
|
my $end = ($i + 100 > $nFids ? $nFids - 1 : $i + 99); |
1961 |
|
# Get a slice of the fid list. |
1962 |
|
my @slice = @{$fids}[$i .. $end]; |
1963 |
|
# Get the relevant attributes. |
1964 |
|
Trace("Retrieving attributes for fids $i to $end.") if T(3); |
1965 |
|
my @aShort = $fig->get_attributes(\@slice, $propKeys); |
1966 |
|
Trace(scalar(@aShort) . " attributes returned for fids $i to $end.") if T(3); |
1967 |
|
push @aList, @aShort; |
1968 |
|
} |
1969 |
|
} |
1970 |
|
# Now we should have all the interesting attributes in @aList. Populate the hash with |
1971 |
|
# them. |
1972 |
|
for my $aListEntry (@aList) { |
1973 |
|
my $fid = $aListEntry->[0]; |
1974 |
|
if (exists $retVal->{$fid}) { |
1975 |
|
push @{$retVal->{$fid}}, $aListEntry; |
1976 |
|
} |
1977 |
|
} |
1978 |
|
# Return the result. |
1979 |
|
return $retVal; |
1980 |
|
} |
1981 |
|
|
1982 |
|
|
1983 |
1; |
1; |