10 |
use Sprout; |
use Sprout; |
11 |
use Stats; |
use Stats; |
12 |
use BasicLocation; |
use BasicLocation; |
13 |
|
use HTML; |
14 |
|
|
15 |
=head1 Sprout Load Methods |
=head1 Sprout Load Methods |
16 |
|
|
30 |
$stats->Accumulate($spl->LoadFeatureData()); |
$stats->Accumulate($spl->LoadFeatureData()); |
31 |
print $stats->Show(); |
print $stats->Show(); |
32 |
|
|
|
This module makes use of the internal Sprout property C<_erdb>. |
|
|
|
|
33 |
It is worth noting that the FIG object does not need to be a real one. Any object |
It is worth noting that the FIG object does not need to be a real one. Any object |
34 |
that implements the FIG methods for data retrieval could be used. So, for example, |
that implements the FIG methods for data retrieval could be used. So, for example, |
35 |
this object could be used to copy data from one Sprout database to another, or |
this object could be used to copy data from one Sprout database to another, or |
78 |
=item subsysFile |
=item subsysFile |
79 |
|
|
80 |
Either the name of the file containing the list of trusted subsystems or a reference |
Either the name of the file containing the list of trusted subsystems or a reference |
81 |
to a list of subsystem names. If nothing is specified, all known subsystems will be |
to a list of subsystem names. If nothing is specified, all NMPDR subsystems will be |
82 |
considered trusted. Only subsystem data related to the trusted subsystems is loaded. |
considered trusted. (A subsystem is considered NMPDR if it has a file named C<NMPDR> |
83 |
|
in its data directory.) Only subsystem data related to the trusted subsystems is loaded. |
84 |
|
|
85 |
=item options |
=item options |
86 |
|
|
93 |
sub new { |
sub new { |
94 |
# Get the parameters. |
# Get the parameters. |
95 |
my ($class, $sprout, $fig, $genomeFile, $subsysFile, $options) = @_; |
my ($class, $sprout, $fig, $genomeFile, $subsysFile, $options) = @_; |
96 |
# Load the list of genomes into a hash. |
# Create the genome hash. |
97 |
my %genomes; |
my %genomes = (); |
98 |
|
# We only need it if load-only is NOT specified. |
99 |
|
if (! $options->{loadOnly}) { |
100 |
if (! defined($genomeFile) || $genomeFile eq '') { |
if (! defined($genomeFile) || $genomeFile eq '') { |
101 |
# Here we want all the complete genomes and an access code of 1. |
# Here we want all the complete genomes and an access code of 1. |
102 |
my @genomeList = $fig->genomes(1); |
my @genomeList = $fig->genomes(1); |
130 |
Confess("Invalid genome parameter ($type) in SproutLoad constructor."); |
Confess("Invalid genome parameter ($type) in SproutLoad constructor."); |
131 |
} |
} |
132 |
} |
} |
133 |
|
} |
134 |
# Load the list of trusted subsystems. |
# Load the list of trusted subsystems. |
135 |
my %subsystems = (); |
my %subsystems = (); |
136 |
|
# We only need it if load-only is NOT specified. |
137 |
|
if (! $options->{loadOnly}) { |
138 |
if (! defined $subsysFile || $subsysFile eq '') { |
if (! defined $subsysFile || $subsysFile eq '') { |
139 |
# Here we want all the subsystems. |
# Here we want all the NMPDR subsystems. First we get the whole list. |
140 |
%subsystems = map { $_ => 1 } $fig->all_subsystems(); |
my @subs = $fig->all_subsystems(); |
141 |
|
# Loop through, checking for the NMPDR file. |
142 |
|
for my $sub (@subs) { |
143 |
|
if (-e "$FIG_Config::data/Subsystems/$sub/NMPDR") { |
144 |
|
$subsystems{$sub} = 1; |
145 |
|
} |
146 |
|
} |
147 |
} else { |
} else { |
148 |
my $type = ref $subsysFile; |
my $type = ref $subsysFile; |
149 |
if ($type eq 'ARRAY') { |
if ($type eq 'ARRAY') { |
163 |
Confess("Invalid subsystem parameter in SproutLoad constructor."); |
Confess("Invalid subsystem parameter in SproutLoad constructor."); |
164 |
} |
} |
165 |
} |
} |
166 |
|
} |
167 |
# Get the data directory from the Sprout object. |
# Get the data directory from the Sprout object. |
168 |
my ($directory) = $sprout->LoadInfo(); |
my ($directory) = $sprout->LoadInfo(); |
169 |
# Create the Sprout load object. |
# Create the Sprout load object. |
173 |
subsystems => \%subsystems, |
subsystems => \%subsystems, |
174 |
sprout => $sprout, |
sprout => $sprout, |
175 |
loadDirectory => $directory, |
loadDirectory => $directory, |
176 |
erdb => $sprout->{_erdb}, |
erdb => $sprout, |
177 |
loaders => [], |
loaders => [], |
178 |
options => $options |
options => $options |
179 |
}; |
}; |
182 |
return $retVal; |
return $retVal; |
183 |
} |
} |
184 |
|
|
185 |
|
=head3 LoadOnly |
186 |
|
|
187 |
|
C<< my $flag = $spl->LoadOnly; >> |
188 |
|
|
189 |
|
Return TRUE if we are in load-only mode, else FALSE. |
190 |
|
|
191 |
|
=cut |
192 |
|
|
193 |
|
sub LoadOnly { |
194 |
|
my ($self) = @_; |
195 |
|
return $self->{options}->{loadOnly}; |
196 |
|
} |
197 |
|
|
198 |
|
=head3 PrimaryOnly |
199 |
|
|
200 |
|
C<< my $flag = $spl->PrimaryOnly; >> |
201 |
|
|
202 |
|
Return TRUE if only the main entity is to be loaded, else FALSE. |
203 |
|
|
204 |
|
=cut |
205 |
|
|
206 |
|
sub PrimaryOnly { |
207 |
|
my ($self) = @_; |
208 |
|
return $self->{options}->{primaryOnly}; |
209 |
|
} |
210 |
|
|
211 |
=head3 LoadGenomeData |
=head3 LoadGenomeData |
212 |
|
|
213 |
C<< my $stats = $spl->LoadGenomeData(); >> |
C<< my $stats = $spl->LoadGenomeData(); >> |
235 |
|
|
236 |
=back |
=back |
237 |
|
|
|
B<TO DO> |
|
|
|
|
|
Real quality vectors instead of C<unknown> for everything. |
|
|
|
|
|
GenomeGroup relation. (The original script took group information from the C<NMPDR> file |
|
|
in each genome's main directory, but no such file exists anywhere in my version of the |
|
|
data store.) |
|
|
|
|
238 |
=cut |
=cut |
239 |
#: Return Type $%; |
#: Return Type $%; |
240 |
sub LoadGenomeData { |
sub LoadGenomeData { |
245 |
# Get the genome count. |
# Get the genome count. |
246 |
my $genomeHash = $self->{genomes}; |
my $genomeHash = $self->{genomes}; |
247 |
my $genomeCount = (keys %{$genomeHash}); |
my $genomeCount = (keys %{$genomeHash}); |
|
Trace("Beginning genome data load.") if T(2); |
|
248 |
# Create load objects for each of the tables we're loading. |
# Create load objects for each of the tables we're loading. |
249 |
my $loadGenome = $self->_TableLoader('Genome', $genomeCount); |
my $loadGenome = $self->_TableLoader('Genome'); |
250 |
my $loadHasContig = $self->_TableLoader('HasContig', $genomeCount * 300); |
my $loadHasContig = $self->_TableLoader('HasContig', $self->PrimaryOnly); |
251 |
my $loadContig = $self->_TableLoader('Contig', $genomeCount * 300); |
my $loadContig = $self->_TableLoader('Contig', $self->PrimaryOnly); |
252 |
my $loadIsMadeUpOf = $self->_TableLoader('IsMadeUpOf', $genomeCount * 60000); |
my $loadIsMadeUpOf = $self->_TableLoader('IsMadeUpOf', $self->PrimaryOnly); |
253 |
my $loadSequence = $self->_TableLoader('Sequence', $genomeCount * 60000); |
my $loadSequence = $self->_TableLoader('Sequence', $self->PrimaryOnly); |
254 |
|
if ($self->{options}->{loadOnly}) { |
255 |
|
Trace("Loading from existing files.") if T(2); |
256 |
|
} else { |
257 |
|
Trace("Generating genome data.") if T(2); |
258 |
# Now we loop through the genomes, generating the data for each one. |
# Now we loop through the genomes, generating the data for each one. |
259 |
for my $genomeID (sort keys %{$genomeHash}) { |
for my $genomeID (sort keys %{$genomeHash}) { |
260 |
Trace("Loading data for genome $genomeID.") if T(3); |
Trace("Generating data for genome $genomeID.") if T(3); |
261 |
$loadGenome->Add("genomeIn"); |
$loadGenome->Add("genomeIn"); |
262 |
# The access code comes in via the genome hash. |
# The access code comes in via the genome hash. |
263 |
my $accessCode = $genomeHash->{$genomeID}; |
my $accessCode = $genomeHash->{$genomeID}; |
264 |
# Get the genus, species, and strain from the scientific name. Note that we append |
# Get the genus, species, and strain from the scientific name. |
|
# the genome ID to the strain. In some cases this is the totality of the strain name. |
|
265 |
my ($genus, $species, @extraData) = split / /, $self->{fig}->genus_species($genomeID); |
my ($genus, $species, @extraData) = split / /, $self->{fig}->genus_species($genomeID); |
266 |
my $extra = join " ", @extraData, "[$genomeID]"; |
my $extra = join " ", @extraData; |
267 |
# Get the full taxonomy. |
# Get the full taxonomy. |
268 |
my $taxonomy = $fig->taxonomy_of($genomeID); |
my $taxonomy = $fig->taxonomy_of($genomeID); |
269 |
# Output the genome record. |
# Output the genome record. |
299 |
} |
} |
300 |
} |
} |
301 |
} |
} |
302 |
|
} |
303 |
# Finish the loads. |
# Finish the loads. |
304 |
my $retVal = $self->_FinishAll(); |
my $retVal = $self->_FinishAll(); |
305 |
# Return the result. |
# Return the result. |
343 |
my $genomeCount = (keys %{$genomeFilter}); |
my $genomeCount = (keys %{$genomeFilter}); |
344 |
my $featureCount = $genomeCount * 4000; |
my $featureCount = $genomeCount * 4000; |
345 |
# Start the loads. |
# Start the loads. |
346 |
my $loadCoupling = $self->_TableLoader('Coupling', $featureCount * $genomeCount); |
my $loadCoupling = $self->_TableLoader('Coupling'); |
347 |
my $loadIsEvidencedBy = $self->_TableLoader('IsEvidencedBy', $featureCount * 8000); |
my $loadIsEvidencedBy = $self->_TableLoader('IsEvidencedBy', $self->PrimaryOnly); |
348 |
my $loadPCH = $self->_TableLoader('PCH', $featureCount * 2000); |
my $loadPCH = $self->_TableLoader('PCH', $self->PrimaryOnly); |
349 |
my $loadParticipatesInCoupling = $self->_TableLoader('ParticipatesInCoupling', $featureCount * 2000); |
my $loadParticipatesInCoupling = $self->_TableLoader('ParticipatesInCoupling', $self->PrimaryOnly); |
350 |
my $loadUsesAsEvidence = $self->_TableLoader('UsesAsEvidence', $featureCount * 8000); |
my $loadUsesAsEvidence = $self->_TableLoader('UsesAsEvidence', $self->PrimaryOnly); |
351 |
Trace("Beginning coupling data load.") if T(2); |
if ($self->{options}->{loadOnly}) { |
352 |
|
Trace("Loading from existing files.") if T(2); |
353 |
|
} else { |
354 |
|
Trace("Generating coupling data.") if T(2); |
355 |
# Loop through the genomes found. |
# Loop through the genomes found. |
356 |
for my $genome (sort keys %{$genomeFilter}) { |
for my $genome (sort keys %{$genomeFilter}) { |
357 |
Trace("Generating coupling data for $genome.") if T(3); |
Trace("Generating coupling data for $genome.") if T(3); |
375 |
for my $coupleData (@couplings) { |
for my $coupleData (@couplings) { |
376 |
my ($peg2, $score) = @{$coupleData}; |
my ($peg2, $score) = @{$coupleData}; |
377 |
# Compute the coupling ID. |
# Compute the coupling ID. |
378 |
my $coupleID = Sprout::CouplingID($peg1, $peg2); |
my $coupleID = $self->{erdb}->CouplingID($peg1, $peg2); |
379 |
if (! exists $dupHash{$coupleID}) { |
if (! exists $dupHash{$coupleID}) { |
380 |
$loadCoupling->Add("couplingIn"); |
$loadCoupling->Add("couplingIn"); |
381 |
# Here we have a new coupling to store in the load files. |
# Here we have a new coupling to store in the load files. |
403 |
# We store this evidence in the hash if the usage |
# We store this evidence in the hash if the usage |
404 |
# is nonzero or no prior evidence has been found. This |
# is nonzero or no prior evidence has been found. This |
405 |
# insures that if there is duplicate evidence, we |
# insures that if there is duplicate evidence, we |
406 |
# at least keep the meaningful ones. Only evidence is |
# at least keep the meaningful ones. Only evidence in |
407 |
# the hash makes it to the output. |
# the hash makes it to the output. |
408 |
if ($usage || ! exists $evidenceMap{$evidenceKey}) { |
if ($usage || ! exists $evidenceMap{$evidenceKey}) { |
409 |
$evidenceMap{$evidenceKey} = $evidenceData; |
$evidenceMap{$evidenceKey} = $evidenceData; |
418 |
$loadIsEvidencedBy->Put($coupleID, $evidenceID); |
$loadIsEvidencedBy->Put($coupleID, $evidenceID); |
419 |
# Connect it to the features. |
# Connect it to the features. |
420 |
$loadUsesAsEvidence->Put($evidenceID, $peg3, 1); |
$loadUsesAsEvidence->Put($evidenceID, $peg3, 1); |
421 |
$loadUsesAsEvidence->Put($evidenceID, $peg4, 1); |
$loadUsesAsEvidence->Put($evidenceID, $peg4, 2); |
422 |
|
} |
423 |
} |
} |
424 |
} |
} |
425 |
} |
} |
446 |
FeatureTranslation |
FeatureTranslation |
447 |
FeatureUpstream |
FeatureUpstream |
448 |
IsLocatedIn |
IsLocatedIn |
449 |
|
HasFeature |
450 |
|
|
451 |
=over 4 |
=over 4 |
452 |
|
|
463 |
my ($self) = @_; |
my ($self) = @_; |
464 |
# Get the FIG object. |
# Get the FIG object. |
465 |
my $fig = $self->{fig}; |
my $fig = $self->{fig}; |
|
# Find out if this is a limited run. |
|
|
my $limited = $self->{options}->{limitedFeatures}; |
|
466 |
# Get the table of genome IDs. |
# Get the table of genome IDs. |
467 |
my $genomeHash = $self->{genomes}; |
my $genomeHash = $self->{genomes}; |
|
my $genomeCount = (keys %{$genomeHash}); |
|
|
my $featureCount = $genomeCount * 4000; |
|
468 |
# Create load objects for each of the tables we're loading. |
# Create load objects for each of the tables we're loading. |
469 |
my $loadFeature = $self->_TableLoader('Feature', $featureCount); |
my $loadFeature = $self->_TableLoader('Feature'); |
470 |
my $loadIsLocatedIn = $self->_TableLoader('IsLocatedIn', $featureCount); |
my $loadIsLocatedIn = $self->_TableLoader('IsLocatedIn', $self->PrimaryOnly); |
471 |
my $loadFeatureAlias = $self->_TableLoader('FeatureAlias', $featureCount * 6); |
my $loadFeatureAlias = $self->_TableLoader('FeatureAlias'); |
472 |
my ($loadFeatureLink, $loadFeatureTranslation, $loadFeatureUpstream); |
my $loadFeatureLink = $self->_TableLoader('FeatureLink'); |
473 |
if (! $limited) { |
my $loadFeatureTranslation = $self->_TableLoader('FeatureTranslation'); |
474 |
$loadFeatureLink = $self->_TableLoader('FeatureLink', $featureCount * 10); |
my $loadFeatureUpstream = $self->_TableLoader('FeatureUpstream'); |
475 |
$loadFeatureTranslation = $self->_TableLoader('FeatureTranslation', $featureCount); |
my $loadHasFeature = $self->_TableLoader('HasFeature'); |
|
$loadFeatureUpstream = $self->_TableLoader('FeatureUpstream', $featureCount); |
|
|
} |
|
476 |
# Get the maximum sequence size. We need this later for splitting up the |
# Get the maximum sequence size. We need this later for splitting up the |
477 |
# locations. |
# locations. |
478 |
my $chunkSize = $self->{sprout}->MaxSegment(); |
my $chunkSize = $self->{sprout}->MaxSegment(); |
479 |
Trace("Beginning feature data load.") if T(2); |
if ($self->{options}->{loadOnly}) { |
480 |
|
Trace("Loading from existing files.") if T(2); |
481 |
|
} else { |
482 |
|
Trace("Generating feature data.") if T(2); |
483 |
# Now we loop through the genomes, generating the data for each one. |
# Now we loop through the genomes, generating the data for each one. |
484 |
for my $genomeID (sort keys %{$genomeHash}) { |
for my $genomeID (sort keys %{$genomeHash}) { |
485 |
Trace("Loading features for genome $genomeID.") if T(3); |
Trace("Loading features for genome $genomeID.") if T(3); |
493 |
my ($featureID, $locations, undef, $type) = @{$featureData}; |
my ($featureID, $locations, undef, $type) = @{$featureData}; |
494 |
# Create the feature record. |
# Create the feature record. |
495 |
$loadFeature->Put($featureID, 1, $type); |
$loadFeature->Put($featureID, 1, $type); |
496 |
|
# Link it to the parent genome. |
497 |
|
$loadHasFeature->Put($genomeID, $featureID, $type); |
498 |
# Create the aliases. |
# Create the aliases. |
499 |
for my $alias ($fig->feature_aliases($featureID)) { |
for my $alias ($fig->feature_aliases($featureID)) { |
500 |
$loadFeatureAlias->Put($featureID, $alias); |
$loadFeatureAlias->Put($featureID, $alias); |
501 |
} |
} |
|
# The next stuff is for a full load only. |
|
|
if (! $limited) { |
|
502 |
# Get the links. |
# Get the links. |
503 |
my @links = $fig->fid_links($featureID); |
my @links = $fig->fid_links($featureID); |
504 |
for my $link (@links) { |
for my $link (@links) { |
517 |
$loadFeatureUpstream->Put($featureID, $upstream); |
$loadFeatureUpstream->Put($featureID, $upstream); |
518 |
} |
} |
519 |
} |
} |
|
} |
|
520 |
# This part is the roughest. We need to relate the features to contig |
# This part is the roughest. We need to relate the features to contig |
521 |
# locations, and the locations must be split so that none of them exceed |
# locations, and the locations must be split so that none of them exceed |
522 |
# the maximum segment size. This simplifies the genes_in_region processing |
# the maximum segment size. This simplifies the genes_in_region processing |
545 |
} |
} |
546 |
} |
} |
547 |
} |
} |
548 |
|
} |
549 |
# Finish the loads. |
# Finish the loads. |
550 |
my $retVal = $self->_FinishAll(); |
my $retVal = $self->_FinishAll(); |
551 |
return $retVal; |
return $retVal; |
582 |
my $fig = $self->{fig}; |
my $fig = $self->{fig}; |
583 |
# Get the table of genome IDs. |
# Get the table of genome IDs. |
584 |
my $genomeHash = $self->{genomes}; |
my $genomeHash = $self->{genomes}; |
|
my $genomeCount = (keys %{$genomeHash}); |
|
|
my $featureCount = $genomeCount * 4000; |
|
585 |
# Create load objects for each of the tables we're loading. |
# Create load objects for each of the tables we're loading. |
586 |
my $loadIsBidirectionalBestHitOf = $self->_TableLoader('IsBidirectionalBestHitOf', |
my $loadIsBidirectionalBestHitOf = $self->_TableLoader('IsBidirectionalBestHitOf'); |
587 |
$featureCount * $genomeCount); |
if ($self->{options}->{loadOnly}) { |
588 |
Trace("Beginning BBH load.") if T(2); |
Trace("Loading from existing files.") if T(2); |
589 |
|
} else { |
590 |
|
Trace("Generating BBH data.") if T(2); |
591 |
# Now we loop through the genomes, generating the data for each one. |
# Now we loop through the genomes, generating the data for each one. |
592 |
for my $genomeID (sort keys %{$genomeHash}) { |
for my $genomeID (sort keys %{$genomeHash}) { |
593 |
$loadIsBidirectionalBestHitOf->Add("genomeIn"); |
$loadIsBidirectionalBestHitOf->Add("genomeIn"); |
613 |
} |
} |
614 |
} |
} |
615 |
} |
} |
616 |
|
} |
617 |
# Finish the loads. |
# Finish the loads. |
618 |
my $retVal = $self->_FinishAll(); |
my $retVal = $self->_FinishAll(); |
619 |
return $retVal; |
return $retVal; |
634 |
The following relations are loaded by this method. |
The following relations are loaded by this method. |
635 |
|
|
636 |
Subsystem |
Subsystem |
637 |
|
SubsystemClass |
638 |
Role |
Role |
639 |
|
RoleEC |
640 |
SSCell |
SSCell |
641 |
ContainsFeature |
ContainsFeature |
642 |
IsGenomeOf |
IsGenomeOf |
644 |
OccursInSubsystem |
OccursInSubsystem |
645 |
ParticipatesIn |
ParticipatesIn |
646 |
HasSSCell |
HasSSCell |
647 |
|
ConsistsOfRoles |
648 |
|
RoleSubset |
649 |
|
HasRoleSubset |
650 |
|
ConsistsOfGenomes |
651 |
|
GenomeSubset |
652 |
|
HasGenomeSubset |
653 |
|
Catalyzes |
654 |
|
Diagram |
655 |
|
RoleOccursIn |
656 |
|
|
657 |
=over 4 |
=over 4 |
658 |
|
|
662 |
|
|
663 |
=back |
=back |
664 |
|
|
|
B<TO DO> |
|
|
|
|
|
Generate RoleName table? |
|
|
|
|
665 |
=cut |
=cut |
666 |
#: Return Type $%; |
#: Return Type $%; |
667 |
sub LoadSubsystemData { |
sub LoadSubsystemData { |
675 |
# Get the subsystem hash. This lists the subsystems we'll process. |
# Get the subsystem hash. This lists the subsystems we'll process. |
676 |
my $subsysHash = $self->{subsystems}; |
my $subsysHash = $self->{subsystems}; |
677 |
my @subsysIDs = sort keys %{$subsysHash}; |
my @subsysIDs = sort keys %{$subsysHash}; |
678 |
my $subsysCount = @subsysIDs; |
# Get the map list. |
679 |
my $genomeCount = (keys %{$genomeHash}); |
my @maps = $fig->all_maps; |
|
my $featureCount = $genomeCount * 4000; |
|
680 |
# Create load objects for each of the tables we're loading. |
# Create load objects for each of the tables we're loading. |
681 |
my $loadSubsystem = $self->_TableLoader('Subsystem', $subsysCount); |
my $loadDiagram = $self->_TableLoader('Diagram', $self->PrimaryOnly); |
682 |
my $loadRole = $self->_TableLoader('Role', $featureCount * 6); |
my $loadRoleOccursIn = $self->_TableLoader('RoleOccursIn', $self->PrimaryOnly); |
683 |
my $loadSSCell = $self->_TableLoader('SSCell', $featureCount * $genomeCount); |
my $loadSubsystem = $self->_TableLoader('Subsystem'); |
684 |
my $loadContainsFeature = $self->_TableLoader('ContainsFeature', $featureCount * $subsysCount); |
my $loadRole = $self->_TableLoader('Role', $self->PrimaryOnly); |
685 |
my $loadIsGenomeOf = $self->_TableLoader('IsGenomeOf', $featureCount * $genomeCount); |
my $loadRoleEC = $self->_TableLoader('RoleEC', $self->PrimaryOnly); |
686 |
my $loadIsRoleOf = $self->_TableLoader('IsRoleOf', $featureCount * $genomeCount); |
my $loadCatalyzes = $self->_TableLoader('Catalyzes', $self->PrimaryOnly); |
687 |
my $loadOccursInSubsystem = $self->_TableLoader('OccursInSubsystem', $featureCount * 6); |
my $loadSSCell = $self->_TableLoader('SSCell', $self->PrimaryOnly); |
688 |
my $loadParticipatesIn = $self->_TableLoader('ParticipatesIn', $subsysCount * $genomeCount); |
my $loadContainsFeature = $self->_TableLoader('ContainsFeature', $self->PrimaryOnly); |
689 |
my $loadHasSSCell = $self->_TableLoader('HasSSCell', $featureCount * $genomeCount); |
my $loadIsGenomeOf = $self->_TableLoader('IsGenomeOf', $self->PrimaryOnly); |
690 |
Trace("Beginning subsystem data load.") if T(2); |
my $loadIsRoleOf = $self->_TableLoader('IsRoleOf', $self->PrimaryOnly); |
691 |
|
my $loadOccursInSubsystem = $self->_TableLoader('OccursInSubsystem', $self->PrimaryOnly); |
692 |
|
my $loadParticipatesIn = $self->_TableLoader('ParticipatesIn', $self->PrimaryOnly); |
693 |
|
my $loadHasSSCell = $self->_TableLoader('HasSSCell', $self->PrimaryOnly); |
694 |
|
my $loadRoleSubset = $self->_TableLoader('RoleSubset', $self->PrimaryOnly); |
695 |
|
my $loadGenomeSubset = $self->_TableLoader('GenomeSubset', $self->PrimaryOnly); |
696 |
|
my $loadConsistsOfRoles = $self->_TableLoader('ConsistsOfRoles', $self->PrimaryOnly); |
697 |
|
my $loadConsistsOfGenomes = $self->_TableLoader('ConsistsOfGenomes', $self->PrimaryOnly); |
698 |
|
my $loadHasRoleSubset = $self->_TableLoader('HasRoleSubset', $self->PrimaryOnly); |
699 |
|
my $loadHasGenomeSubset = $self->_TableLoader('HasGenomeSubset', $self->PrimaryOnly); |
700 |
|
my $loadSubsystemClass = $self->_TableLoader('SubsystemClass', $self->PrimaryOnly); |
701 |
|
if ($self->{options}->{loadOnly}) { |
702 |
|
Trace("Loading from existing files.") if T(2); |
703 |
|
} else { |
704 |
|
Trace("Generating subsystem data.") if T(2); |
705 |
|
# This hash will contain the role for each EC. When we're done, this |
706 |
|
# information will be used to generate the Catalyzes table. |
707 |
|
my %ecToRoles = (); |
708 |
# Loop through the subsystems. Our first task will be to create the |
# Loop through the subsystems. Our first task will be to create the |
709 |
# roles. We do this by looping through the subsystems and creating a |
# roles. We do this by looping through the subsystems and creating a |
710 |
# role hash. The hash tracks each role ID so that we don't create |
# role hash. The hash tracks each role ID so that we don't create |
711 |
# duplicates. As we move along, we'll connect the roles and subsystems. |
# duplicates. As we move along, we'll connect the roles and subsystems |
712 |
|
# and memorize up the reactions. |
713 |
|
my ($genomeID, $roleID); |
714 |
my %roleData = (); |
my %roleData = (); |
715 |
for my $subsysID (@subsysIDs) { |
for my $subsysID (@subsysIDs) { |
716 |
|
# Get the subsystem object. |
717 |
|
my $sub = $fig->get_subsystem($subsysID); |
718 |
|
# Only proceed if the subsystem has a spreadsheet. |
719 |
|
if (! $sub->{empty_ss}) { |
720 |
Trace("Creating subsystem $subsysID.") if T(3); |
Trace("Creating subsystem $subsysID.") if T(3); |
721 |
$loadSubsystem->Add("subsystemIn"); |
$loadSubsystem->Add("subsystemIn"); |
722 |
# Create the subsystem record. |
# Create the subsystem record. |
723 |
$loadSubsystem->Put($subsysID); |
my $curator = $sub->get_curator(); |
724 |
# Get the subsystem's roles. |
my $notes = $sub->get_notes(); |
725 |
my @roles = $fig->subsystem_to_roles($subsysID); |
$loadSubsystem->Put($subsysID, $curator, $notes); |
726 |
# Connect the roles to the subsystem. If a role is new, we create |
my $class = $fig->subsystem_classification($subsysID); |
727 |
# a role record for it. |
if ($class) { |
728 |
for my $roleID (@roles) { |
$loadSubsystemClass->Put($subsysID, $class); |
729 |
|
} |
730 |
|
# Connect it to its roles. Each role is a column in the subsystem spreadsheet. |
731 |
|
for (my $col = 0; defined($roleID = $sub->get_role($col)); $col++) { |
732 |
|
# Connect to this role. |
733 |
$loadOccursInSubsystem->Add("roleIn"); |
$loadOccursInSubsystem->Add("roleIn"); |
734 |
$loadOccursInSubsystem->Put($roleID, $subsysID); |
$loadOccursInSubsystem->Put($roleID, $subsysID, $col); |
735 |
|
# If it's a new role, add it to the role table. |
736 |
if (! exists $roleData{$roleID}) { |
if (! exists $roleData{$roleID}) { |
737 |
$loadRole->Put($roleID); |
# Get the role's abbreviation. |
738 |
|
my $abbr = $sub->get_role_abbr($col); |
739 |
|
# Add the role. |
740 |
|
$loadRole->Put($roleID, $abbr); |
741 |
$roleData{$roleID} = 1; |
$roleData{$roleID} = 1; |
742 |
|
# Check for an EC number. |
743 |
|
if ($roleID =~ /\(EC ([^.]+\.[^.]+\.[^.]+\.[^)]+)\)\s*$/) { |
744 |
|
my $ec = $1; |
745 |
|
$loadRoleEC->Put($roleID, $ec); |
746 |
|
$ecToRoles{$ec} = $roleID; |
747 |
|
} |
748 |
} |
} |
749 |
} |
} |
750 |
# Now all roles for this subsystem have been filled in. We create the |
# Now we create the spreadsheet for the subsystem by matching roles to |
751 |
# spreadsheet by matches roles to genomes. To do this, we need to |
# genomes. Each genome is a row and each role is a column. We may need |
752 |
# get the genomes on the sheet. |
# to actually create the roles as we find them. |
753 |
Trace("Creating subsystem $subsysID spreadsheet.") if T(3); |
Trace("Creating subsystem $subsysID spreadsheet.") if T(3); |
754 |
my @genomes = map { $_->[0] } @{$fig->subsystem_genomes($subsysID)}; |
for (my $row = 0; defined($genomeID = $sub->get_genome($row)); $row++) { |
755 |
for my $genomeID (@genomes) { |
# Only proceed if this is one of our genomes. |
|
# Only process this genome if it's one of ours. |
|
756 |
if (exists $genomeHash->{$genomeID}) { |
if (exists $genomeHash->{$genomeID}) { |
|
Trace("Processing genome $genomeID for subsystem $subsysID."); |
|
|
# Connect the genome to the subsystem. |
|
|
$loadParticipatesIn->Put($genomeID, $subsysID); |
|
757 |
# Count the PEGs and cells found for verification purposes. |
# Count the PEGs and cells found for verification purposes. |
758 |
my $pegCount = 0; |
my $pegCount = 0; |
759 |
my $cellCount = 0; |
my $cellCount = 0; |
760 |
|
# Create a list for the PEGs we find. This list will be used |
761 |
|
# to generate cluster numbers. |
762 |
|
my @pegsFound = (); |
763 |
|
# Create a hash that maps spreadsheet IDs to PEGs. We will |
764 |
|
# use this to generate the ContainsFeature data after we have |
765 |
|
# the cluster numbers. |
766 |
|
my %cellPegs = (); |
767 |
|
# Get the genome's variant code for this subsystem. |
768 |
|
my $variantCode = $sub->get_variant_code($row); |
769 |
# Loop through the subsystem's roles. We use an index because it is |
# Loop through the subsystem's roles. We use an index because it is |
770 |
# part of the spreadsheet cell ID. |
# part of the spreadsheet cell ID. |
771 |
for (my $i = 0; $i <= $#roles; $i++) { |
for (my $col = 0; defined($roleID = $sub->get_role($col)); $col++) { |
|
my $role = $roles[$i]; |
|
772 |
# Get the features in the spreadsheet cell for this genome and role. |
# Get the features in the spreadsheet cell for this genome and role. |
773 |
my @pegs = $fig->pegs_in_subsystem_cell($subsysID, $genomeID, $i); |
my @pegs = grep { !$fig->is_deleted_fid($_) } $sub->get_pegs_from_cell($row, $col); |
774 |
# Only proceed if features exist. |
# Only proceed if features exist. |
775 |
if (@pegs > 0) { |
if (@pegs > 0) { |
776 |
# Create the spreadsheet cell. |
# Create the spreadsheet cell. |
777 |
$cellCount++; |
$cellCount++; |
778 |
my $cellID = "$subsysID:$genomeID:$i"; |
my $cellID = "$subsysID:$genomeID:$col"; |
779 |
$loadSSCell->Put($cellID); |
$loadSSCell->Put($cellID); |
780 |
$loadIsGenomeOf->Put($genomeID, $cellID); |
$loadIsGenomeOf->Put($genomeID, $cellID); |
781 |
$loadIsRoleOf->Put($role, $cellID); |
$loadIsRoleOf->Put($roleID, $cellID); |
782 |
$loadHasSSCell->Put($subsysID, $cellID); |
$loadHasSSCell->Put($subsysID, $cellID); |
783 |
# Attach the features to it. |
# Remember its features. |
784 |
for my $pegID (@pegs) { |
push @pegsFound, @pegs; |
785 |
$loadContainsFeature->Put($cellID, $pegID); |
$cellPegs{$cellID} = \@pegs; |
786 |
$pegCount++; |
$pegCount += @pegs; |
787 |
|
} |
788 |
|
} |
789 |
|
# If we found some cells for this genome, we need to compute clusters and |
790 |
|
# denote it participates in the subsystem. |
791 |
|
if ($pegCount > 0) { |
792 |
|
Trace("$pegCount PEGs in $cellCount cells for $genomeID.") if T(3); |
793 |
|
$loadParticipatesIn->Put($genomeID, $subsysID, $variantCode); |
794 |
|
# Create a hash mapping PEG IDs to cluster numbers. |
795 |
|
# We default to -1 for all of them. |
796 |
|
my %clusterOf = map { $_ => -1 } @pegsFound; |
797 |
|
# Partition the PEGs found into clusters. |
798 |
|
my @clusters = $fig->compute_clusters([keys %clusterOf], $sub); |
799 |
|
for (my $i = 0; $i <= $#clusters; $i++) { |
800 |
|
my $subList = $clusters[$i]; |
801 |
|
for my $peg (@{$subList}) { |
802 |
|
$clusterOf{$peg} = $i; |
803 |
|
} |
804 |
|
} |
805 |
|
# Create the ContainsFeature data. |
806 |
|
for my $cellID (keys %cellPegs) { |
807 |
|
my $cellList = $cellPegs{$cellID}; |
808 |
|
for my $cellPeg (@$cellList) { |
809 |
|
$loadContainsFeature->Put($cellID, $cellPeg, $clusterOf{$cellPeg}); |
810 |
} |
} |
811 |
} |
} |
812 |
} |
} |
|
Trace("$pegCount PEGs found in $cellCount cells.") if T(3); |
|
813 |
} |
} |
814 |
} |
} |
815 |
|
# Now we need to generate the subsets. The subset names must be concatenated to |
816 |
|
# the subsystem name to make them unique keys. There are two types of subsets: |
817 |
|
# genome subsets and role subsets. We do the role subsets first. |
818 |
|
my @subsetNames = $sub->get_subset_names(); |
819 |
|
for my $subsetID (@subsetNames) { |
820 |
|
# Create the subset record. |
821 |
|
my $actualID = "$subsysID:$subsetID"; |
822 |
|
$loadRoleSubset->Put($actualID); |
823 |
|
# Connect the subset to the subsystem. |
824 |
|
$loadHasRoleSubset->Put($subsysID, $actualID); |
825 |
|
# Connect the subset to its roles. |
826 |
|
my @roles = $sub->get_subsetC_roles($subsetID); |
827 |
|
for my $roleID (@roles) { |
828 |
|
$loadConsistsOfRoles->Put($actualID, $roleID); |
829 |
} |
} |
|
# Finish the load. |
|
|
my $retVal = $self->_FinishAll(); |
|
|
return $retVal; |
|
830 |
} |
} |
831 |
|
# Next the genome subsets. |
832 |
=head3 LoadDiagramData |
@subsetNames = $sub->get_subset_namesR(); |
833 |
|
for my $subsetID (@subsetNames) { |
834 |
C<< my $stats = $spl->LoadDiagramData(); >> |
# Create the subset record. |
835 |
|
my $actualID = "$subsysID:$subsetID"; |
836 |
Load the diagram data from FIG into Sprout. |
$loadGenomeSubset->Put($actualID); |
837 |
|
# Connect the subset to the subsystem. |
838 |
Diagrams are used to organize functional roles. The diagram shows the |
$loadHasGenomeSubset->Put($subsysID, $actualID); |
839 |
connections between chemicals that interact with a subsystem. |
# Connect the subset to its genomes. |
840 |
|
my @genomes = $sub->get_subsetR($subsetID); |
841 |
The following relations are loaded by this method. |
for my $genomeID (@genomes) { |
842 |
|
$loadConsistsOfGenomes->Put($actualID, $genomeID); |
843 |
Diagram |
} |
844 |
RoleOccursIn |
} |
845 |
|
} |
846 |
=over 4 |
# Now we loop through the diagrams. We need to create the diagram records |
847 |
|
# and link each diagram to its roles. Note that only roles which occur |
848 |
=item RETURNS |
# in subsystems (and therefore appear in the %ecToRoles hash) are |
849 |
|
# included. |
850 |
Returns a statistics object for the loads. |
for my $map (@maps) { |
|
|
|
|
=back |
|
|
|
|
|
=cut |
|
|
#: Return Type $%; |
|
|
sub LoadDiagramData { |
|
|
# Get this object instance. |
|
|
my ($self) = @_; |
|
|
# Get the FIG object. |
|
|
my $fig = $self->{fig}; |
|
|
# Get the map list. |
|
|
my @maps = $fig->all_maps; |
|
|
my $mapCount = @maps; |
|
|
my $genomeCount = (keys %{$self->{genomes}}); |
|
|
my $featureCount = $genomeCount * 4000; |
|
|
# Create load objects for each of the tables we're loading. |
|
|
my $loadDiagram = $self->_TableLoader('Diagram', $mapCount); |
|
|
my $loadRoleOccursIn = $self->_TableLoader('RoleOccursIn', $featureCount * 6); |
|
|
Trace("Beginning diagram data load.") if T(2); |
|
|
# Loop through the diagrams. |
|
|
for my $map ($fig->all_maps) { |
|
851 |
Trace("Loading diagram $map.") if T(3); |
Trace("Loading diagram $map.") if T(3); |
852 |
# Get the diagram's descriptive name. |
# Get the diagram's descriptive name. |
853 |
my $name = $fig->map_name($map); |
my $name = $fig->map_name($map); |
856 |
# A hash is used to prevent duplicates. |
# A hash is used to prevent duplicates. |
857 |
my %roleHash = (); |
my %roleHash = (); |
858 |
for my $role ($fig->map_to_ecs($map)) { |
for my $role ($fig->map_to_ecs($map)) { |
859 |
if (! $roleHash{$role}) { |
if (exists $ecToRoles{$role} && ! $roleHash{$role}) { |
860 |
$loadRoleOccursIn->Put($role, $map); |
$loadRoleOccursIn->Put($ecToRoles{$role}, $map); |
861 |
$roleHash{$role} = 1; |
$roleHash{$role} = 1; |
862 |
} |
} |
863 |
} |
} |
864 |
} |
} |
865 |
|
# Before we leave, we must create the Catalyzes table. We start with the reactions, |
866 |
|
# then use the "ecToRoles" table to convert EC numbers to role IDs. |
867 |
|
my @reactions = $fig->all_reactions(); |
868 |
|
for my $reactionID (@reactions) { |
869 |
|
# Get this reaction's list of roles. The results will be EC numbers. |
870 |
|
my @roles = $fig->catalyzed_by($reactionID); |
871 |
|
# Loop through the roles, creating catalyzation records. |
872 |
|
for my $thisRole (@roles) { |
873 |
|
if (exists $ecToRoles{$thisRole}) { |
874 |
|
$loadCatalyzes->Put($ecToRoles{$thisRole}, $reactionID); |
875 |
|
} |
876 |
|
} |
877 |
|
} |
878 |
|
} |
879 |
|
} |
880 |
# Finish the load. |
# Finish the load. |
881 |
my $retVal = $self->_FinishAll(); |
my $retVal = $self->_FinishAll(); |
882 |
return $retVal; |
return $retVal; |
918 |
my $fig = $self->{fig}; |
my $fig = $self->{fig}; |
919 |
# Get the genome hash. |
# Get the genome hash. |
920 |
my $genomeHash = $self->{genomes}; |
my $genomeHash = $self->{genomes}; |
|
my $genomeCount = (keys %{$genomeHash}); |
|
921 |
# Create load objects for each of the tables we're loading. |
# Create load objects for each of the tables we're loading. |
922 |
my $loadProperty = $self->_TableLoader('Property', $genomeCount * 1500); |
my $loadProperty = $self->_TableLoader('Property'); |
923 |
my $loadHasProperty = $self->_TableLoader('HasProperty', $genomeCount * 1500); |
my $loadHasProperty = $self->_TableLoader('HasProperty', $self->PrimaryOnly); |
924 |
Trace("Beginning property data load.") if T(2); |
if ($self->{options}->{loadOnly}) { |
925 |
|
Trace("Loading from existing files.") if T(2); |
926 |
|
} else { |
927 |
|
Trace("Generating property data.") if T(2); |
928 |
# Create a hash for storing property IDs. |
# Create a hash for storing property IDs. |
929 |
my %propertyKeys = (); |
my %propertyKeys = (); |
930 |
my $nextID = 1; |
my $nextID = 1; |
931 |
# Loop through the genomes. |
# Loop through the genomes. |
932 |
for my $genomeID (keys %{$genomeHash}) { |
for my $genomeID (keys %{$genomeHash}) { |
933 |
$loadProperty->Add("genomeIn"); |
$loadProperty->Add("genomeIn"); |
934 |
|
Trace("Generating properties for $genomeID.") if T(3); |
935 |
# Get the genome's features. The feature ID is the first field in the |
# Get the genome's features. The feature ID is the first field in the |
936 |
# tuples returned by "all_features_detailed". We use "all_features_detailed" |
# tuples returned by "all_features_detailed". We use "all_features_detailed" |
937 |
# rather than "all_features" because we want all features regardless of type. |
# rather than "all_features" because we want all features regardless of type. |
938 |
my @features = map { $_->[0] } @{$fig->all_features_detailed($genomeID)}; |
my @features = map { $_->[0] } @{$fig->all_features_detailed($genomeID)}; |
939 |
|
my $featureCount = 0; |
940 |
|
my $propertyCount = 0; |
941 |
# Loop through the features, creating HasProperty records. |
# Loop through the features, creating HasProperty records. |
942 |
for my $fid (@features) { |
for my $fid (@features) { |
|
$loadProperty->Add("featureIn"); |
|
943 |
# Get all attributes for this feature. We do this one feature at a time |
# Get all attributes for this feature. We do this one feature at a time |
944 |
# to insure we do not get any genome attributes. |
# to insure we do not get any genome attributes. |
945 |
my @attributeList = $fig->get_attributes($fid, '', '', ''); |
my @attributeList = $fig->get_attributes($fid, '', '', ''); |
946 |
|
if (scalar @attributeList) { |
947 |
|
$featureCount++; |
948 |
|
} |
949 |
# Loop through the attributes. |
# Loop through the attributes. |
950 |
for my $tuple (@attributeList) { |
for my $tuple (@attributeList) { |
951 |
|
$propertyCount++; |
952 |
# Get this attribute value's data. Note that we throw away the FID, |
# Get this attribute value's data. Note that we throw away the FID, |
953 |
# since it will always be the same as the value if "$fid". |
# since it will always be the same as the value if "$fid". |
954 |
my (undef, $key, $value, $url) = @{$tuple}; |
my (undef, $key, $value, $url) = @{$tuple}; |
970 |
$loadHasProperty->Put($fid, $propertyID, $url); |
$loadHasProperty->Put($fid, $propertyID, $url); |
971 |
} |
} |
972 |
} |
} |
973 |
|
# Update the statistics. |
974 |
|
Trace("$propertyCount attributes processed for $featureCount features.") if T(3); |
975 |
|
$loadHasProperty->Add("featuresIn", $featureCount); |
976 |
|
$loadHasProperty->Add("propertiesIn", $propertyCount); |
977 |
|
} |
978 |
} |
} |
979 |
# Finish the load. |
# Finish the load. |
980 |
my $retVal = $self->_FinishAll(); |
my $retVal = $self->_FinishAll(); |
1015 |
my $fig = $self->{fig}; |
my $fig = $self->{fig}; |
1016 |
# Get the genome hash. |
# Get the genome hash. |
1017 |
my $genomeHash = $self->{genomes}; |
my $genomeHash = $self->{genomes}; |
|
my $genomeCount = (keys %{$genomeHash}); |
|
1018 |
# Create load objects for each of the tables we're loading. |
# Create load objects for each of the tables we're loading. |
1019 |
my $loadAnnotation = $self->_TableLoader('Annotation', $genomeCount * 4000); |
my $loadAnnotation = $self->_TableLoader('Annotation'); |
1020 |
my $loadIsTargetOfAnnotation = $self->_TableLoader('IsTargetOfAnnotation', $genomeCount * 4000); |
my $loadIsTargetOfAnnotation = $self->_TableLoader('IsTargetOfAnnotation', $self->PrimaryOnly); |
1021 |
my $loadSproutUser = $self->_TableLoader('SproutUser', 100); |
my $loadSproutUser = $self->_TableLoader('SproutUser', $self->PrimaryOnly); |
1022 |
my $loadUserAccess = $self->_TableLoader('UserAccess', 1000); |
my $loadUserAccess = $self->_TableLoader('UserAccess', $self->PrimaryOnly); |
1023 |
my $loadMadeAnnotation = $self->_TableLoader('MadeAnnotation', $genomeCount * 4000); |
my $loadMadeAnnotation = $self->_TableLoader('MadeAnnotation', $self->PrimaryOnly); |
1024 |
Trace("Beginning annotation data load.") if T(2); |
if ($self->{options}->{loadOnly}) { |
1025 |
|
Trace("Loading from existing files.") if T(2); |
1026 |
|
} else { |
1027 |
|
Trace("Generating annotation data.") if T(2); |
1028 |
# Create a hash of user names. We'll use this to prevent us from generating duplicate |
# Create a hash of user names. We'll use this to prevent us from generating duplicate |
1029 |
# user records. |
# user records. |
1030 |
my %users = ( FIG => 1, master => 1 ); |
my %users = ( FIG => 1, master => 1 ); |
1038 |
# Loop through the genomes. |
# Loop through the genomes. |
1039 |
for my $genomeID (sort keys %{$genomeHash}) { |
for my $genomeID (sort keys %{$genomeHash}) { |
1040 |
Trace("Processing $genomeID.") if T(3); |
Trace("Processing $genomeID.") if T(3); |
|
# Get the genome's PEGs. |
|
|
my @pegs = $fig->pegs_of($genomeID); |
|
|
for my $peg (@pegs) { |
|
|
Trace("Processing $peg.") if T(4); |
|
1041 |
# Create a hash of timestamps. We use this to prevent duplicate time stamps |
# Create a hash of timestamps. We use this to prevent duplicate time stamps |
1042 |
# from showing up for a single PEG's annotations. |
# from showing up for a single PEG's annotations. |
1043 |
my %seenTimestamps = (); |
my %seenTimestamps = (); |
1044 |
# Check for a functional assignment. |
# Get the genome's annotations. |
1045 |
my $func = $fig->function_of($peg); |
my @annotations = $fig->read_all_annotations($genomeID); |
1046 |
if ($func) { |
Trace("Processing annotations.") if T(2); |
1047 |
# If this is NOT a hypothetical assignment, we create an |
for my $tuple (@annotations) { |
1048 |
# assignment annotation for it. |
# Get the annotation tuple. |
1049 |
if (! FIG::hypo($peg)) { |
my ($peg, $timestamp, $user, $text) = @{$tuple}; |
|
# Note that we double the slashes so that what goes into the database is |
|
|
# a new-line escape sequence rather than an actual new-line. |
|
|
$loadAnnotation->Put("$peg:$time", $time, "FIG\\nSet function to\\n$func"); |
|
|
$loadIsTargetOfAnnotation->Put($peg, "$peg:$time"); |
|
|
$loadMadeAnnotation->Put("FIG", "$peg:$time"); |
|
|
# Denote we've seen this timestamp. |
|
|
$seenTimestamps{$time} = 1; |
|
|
} |
|
|
# Now loop through the real annotations. |
|
|
for my $tuple ($fig->feature_annotations($peg, "raw")) { |
|
|
my ($fid, $timestamp, $user, $text) = @{$tuple}; |
|
1050 |
# Here we fix up the annotation text. "\r" is removed, |
# Here we fix up the annotation text. "\r" is removed, |
1051 |
# and "\t" and "\n" are escaped. Note we use the "s" |
# and "\t" and "\n" are escaped. Note we use the "gs" |
1052 |
# modifier so that new-lines inside the text do not |
# modifier so that new-lines inside the text do not |
1053 |
# stop the substitution search. |
# stop the substitution search. |
1054 |
$text =~ s/\r//gs; |
$text =~ s/\r//gs; |
1058 |
$text =~ s/Set master function/Set FIG function/s; |
$text =~ s/Set master function/Set FIG function/s; |
1059 |
# Insure the time stamp is valid. |
# Insure the time stamp is valid. |
1060 |
if ($timestamp =~ /^\d+$/) { |
if ($timestamp =~ /^\d+$/) { |
1061 |
# Here it's a number. We need to insure it's unique. |
# Here it's a number. We need to insure the one we use to form |
1062 |
while ($seenTimestamps{$timestamp}) { |
# the key is unique. |
1063 |
$timestamp++; |
my $keyStamp = $timestamp; |
1064 |
|
while ($seenTimestamps{"$peg:$keyStamp"}) { |
1065 |
|
$keyStamp++; |
1066 |
} |
} |
1067 |
$seenTimestamps{$timestamp} = 1; |
my $annotationID = "$peg:$keyStamp"; |
1068 |
my $annotationID = "$peg:$timestamp"; |
$seenTimestamps{$annotationID} = 1; |
1069 |
# Insure the user exists. |
# Insure the user exists. |
1070 |
if (! $users{$user}) { |
if (! $users{$user}) { |
1071 |
$loadSproutUser->Put($user, "SEED user"); |
$loadSproutUser->Put($user, "SEED user"); |
1073 |
$users{$user} = 1; |
$users{$user} = 1; |
1074 |
} |
} |
1075 |
# Generate the annotation. |
# Generate the annotation. |
1076 |
$loadAnnotation->Put($annotationID, $timestamp, "$user\\n$text"); |
$loadAnnotation->Put($annotationID, $timestamp, $text); |
1077 |
$loadIsTargetOfAnnotation->Put($peg, $annotationID); |
$loadIsTargetOfAnnotation->Put($peg, $annotationID); |
1078 |
$loadMadeAnnotation->Put($user, $annotationID); |
$loadMadeAnnotation->Put($user, $annotationID); |
1079 |
} else { |
} else { |
1083 |
} |
} |
1084 |
} |
} |
1085 |
} |
} |
|
} |
|
1086 |
# Finish the load. |
# Finish the load. |
1087 |
my $retVal = $self->_FinishAll(); |
my $retVal = $self->_FinishAll(); |
1088 |
return $retVal; |
return $retVal; |
1123 |
my $fig = $self->{fig}; |
my $fig = $self->{fig}; |
1124 |
# Get the genome hash. |
# Get the genome hash. |
1125 |
my $genomeHash = $self->{genomes}; |
my $genomeHash = $self->{genomes}; |
|
my $genomeCount = (keys %{$genomeHash}); |
|
1126 |
# Create load objects for each of the tables we're loading. |
# Create load objects for each of the tables we're loading. |
1127 |
my $loadComesFrom = $self->_TableLoader('ComesFrom', $genomeCount * 4); |
my $loadComesFrom = $self->_TableLoader('ComesFrom', $self->PrimaryOnly); |
1128 |
my $loadSource = $self->_TableLoader('Source', $genomeCount * 4); |
my $loadSource = $self->_TableLoader('Source'); |
1129 |
my $loadSourceURL = $self->_TableLoader('SourceURL', $genomeCount * 8); |
my $loadSourceURL = $self->_TableLoader('SourceURL'); |
1130 |
Trace("Beginning source data load.") if T(2); |
if ($self->{options}->{loadOnly}) { |
1131 |
|
Trace("Loading from existing files.") if T(2); |
1132 |
|
} else { |
1133 |
|
Trace("Generating annotation data.") if T(2); |
1134 |
# Create hashes to collect the Source information. |
# Create hashes to collect the Source information. |
1135 |
my %sourceURL = (); |
my %sourceURL = (); |
1136 |
my %sourceDesc = (); |
my %sourceDesc = (); |
1144 |
chomp $line; |
chomp $line; |
1145 |
my($sourceID, $desc, $url) = split(/\t/,$line); |
my($sourceID, $desc, $url) = split(/\t/,$line); |
1146 |
$loadComesFrom->Put($genomeID, $sourceID); |
$loadComesFrom->Put($genomeID, $sourceID); |
1147 |
if ($url && ! exists $sourceURL{$genomeID}) { |
if ($url && ! exists $sourceURL{$sourceID}) { |
1148 |
$loadSourceURL->Put($sourceID, $url); |
$loadSourceURL->Put($sourceID, $url); |
1149 |
$sourceURL{$sourceID} = 1; |
$sourceURL{$sourceID} = 1; |
1150 |
} |
} |
1151 |
if ($desc && ! exists $sourceDesc{$sourceID}) { |
if ($desc) { |
1152 |
$loadSource->Put($sourceID, $desc); |
$sourceDesc{$sourceID} = $desc; |
1153 |
$sourceDesc{$sourceID} = 1; |
} elsif (! exists $sourceDesc{$sourceID}) { |
1154 |
|
$sourceDesc{$sourceID} = $sourceID; |
1155 |
} |
} |
1156 |
} |
} |
1157 |
close TMP; |
close TMP; |
1158 |
} |
} |
1159 |
|
# Write the source descriptions. |
1160 |
|
for my $sourceID (keys %sourceDesc) { |
1161 |
|
$loadSource->Put($sourceID, $sourceDesc{$sourceID}); |
1162 |
|
} |
1163 |
|
} |
1164 |
# Finish the load. |
# Finish the load. |
1165 |
my $retVal = $self->_FinishAll(); |
my $retVal = $self->_FinishAll(); |
1166 |
return $retVal; |
return $retVal; |
1200 |
my $fig = $self->{fig}; |
my $fig = $self->{fig}; |
1201 |
# Get the genome hash. |
# Get the genome hash. |
1202 |
my $genomeHash = $self->{genomes}; |
my $genomeHash = $self->{genomes}; |
|
my $genomeCount = (keys %{$genomeHash}); |
|
1203 |
# Convert the genome hash. We'll get the genus and species for each genome and make |
# Convert the genome hash. We'll get the genus and species for each genome and make |
1204 |
# it the key. |
# it the key. |
1205 |
my %speciesHash = map { $fig->genus_species($_) => $_ } (keys %{$genomeHash}); |
my %speciesHash = map { $fig->genus_species($_) => $_ } (keys %{$genomeHash}); |
1206 |
# Create load objects for each of the tables we're loading. |
# Create load objects for each of the tables we're loading. |
1207 |
my $loadExternalAliasFunc = $self->_TableLoader('ExternalAliasFunc', $genomeCount * 4000); |
my $loadExternalAliasFunc = $self->_TableLoader('ExternalAliasFunc'); |
1208 |
my $loadExternalAliasOrg = $self->_TableLoader('ExternalAliasOrg', $genomeCount * 4000); |
my $loadExternalAliasOrg = $self->_TableLoader('ExternalAliasOrg'); |
1209 |
Trace("Beginning external data load.") if T(2); |
if ($self->{options}->{loadOnly}) { |
1210 |
|
Trace("Loading from existing files.") if T(2); |
1211 |
|
} else { |
1212 |
|
Trace("Generating external data.") if T(2); |
1213 |
# We loop through the files one at a time. First, the organism file. |
# We loop through the files one at a time. First, the organism file. |
1214 |
Open(\*ORGS, "<$FIG_Config::global/ext_org.table"); |
Open(\*ORGS, "<$FIG_Config::global/ext_org.table"); |
1215 |
my $orgLine; |
my $orgLine; |
1239 |
$loadExternalAliasFunc->Put(@funcFields[0,1]); |
$loadExternalAliasFunc->Put(@funcFields[0,1]); |
1240 |
} |
} |
1241 |
} |
} |
1242 |
|
} |
1243 |
|
# Finish the load. |
1244 |
|
my $retVal = $self->_FinishAll(); |
1245 |
|
return $retVal; |
1246 |
|
} |
1247 |
|
|
1248 |
|
|
1249 |
|
=head3 LoadReactionData |
1250 |
|
|
1251 |
|
C<< my $stats = $spl->LoadReactionData(); >> |
1252 |
|
|
1253 |
|
Load the reaction data from FIG into Sprout. |
1254 |
|
|
1255 |
|
Reaction data connects reactions to the compounds that participate in them. |
1256 |
|
|
1257 |
|
The following relations are loaded by this method. |
1258 |
|
|
1259 |
|
Reaction |
1260 |
|
ReactionURL |
1261 |
|
Compound |
1262 |
|
CompoundName |
1263 |
|
CompoundCAS |
1264 |
|
IsAComponentOf |
1265 |
|
|
1266 |
|
This method proceeds reaction by reaction rather than genome by genome. |
1267 |
|
|
1268 |
|
=over 4 |
1269 |
|
|
1270 |
|
=item RETURNS |
1271 |
|
|
1272 |
|
Returns a statistics object for the loads. |
1273 |
|
|
1274 |
|
=back |
1275 |
|
|
1276 |
|
=cut |
1277 |
|
#: Return Type $%; |
1278 |
|
sub LoadReactionData { |
1279 |
|
# Get this object instance. |
1280 |
|
my ($self) = @_; |
1281 |
|
# Get the FIG object. |
1282 |
|
my $fig = $self->{fig}; |
1283 |
|
# Create load objects for each of the tables we're loading. |
1284 |
|
my $loadReaction = $self->_TableLoader('Reaction'); |
1285 |
|
my $loadReactionURL = $self->_TableLoader('ReactionURL', $self->PrimaryOnly); |
1286 |
|
my $loadCompound = $self->_TableLoader('Compound', $self->PrimaryOnly); |
1287 |
|
my $loadCompoundName = $self->_TableLoader('CompoundName', $self->PrimaryOnly); |
1288 |
|
my $loadCompoundCAS = $self->_TableLoader('CompoundCAS', $self->PrimaryOnly); |
1289 |
|
my $loadIsAComponentOf = $self->_TableLoader('IsAComponentOf', $self->PrimaryOnly); |
1290 |
|
if ($self->{options}->{loadOnly}) { |
1291 |
|
Trace("Loading from existing files.") if T(2); |
1292 |
|
} else { |
1293 |
|
Trace("Generating annotation data.") if T(2); |
1294 |
|
# First we create the compounds. |
1295 |
|
my @compounds = $fig->all_compounds(); |
1296 |
|
for my $cid (@compounds) { |
1297 |
|
# Check for names. |
1298 |
|
my @names = $fig->names_of_compound($cid); |
1299 |
|
# Each name will be given a priority number, starting with 1. |
1300 |
|
my $prio = 1; |
1301 |
|
for my $name (@names) { |
1302 |
|
$loadCompoundName->Put($cid, $name, $prio++); |
1303 |
|
} |
1304 |
|
# Create the main compound record. Note that the first name |
1305 |
|
# becomes the label. |
1306 |
|
my $label = (@names > 0 ? $names[0] : $cid); |
1307 |
|
$loadCompound->Put($cid, $label); |
1308 |
|
# Check for a CAS ID. |
1309 |
|
my $cas = $fig->cas($cid); |
1310 |
|
if ($cas) { |
1311 |
|
$loadCompoundCAS->Put($cid, $cas); |
1312 |
|
} |
1313 |
|
} |
1314 |
|
# All the compounds are set up, so we need to loop through the reactions next. First, |
1315 |
|
# we initialize the discriminator index. This is a single integer used to insure |
1316 |
|
# duplicate elements in a reaction are not accidentally collapsed. |
1317 |
|
my $discrim = 0; |
1318 |
|
my @reactions = $fig->all_reactions(); |
1319 |
|
for my $reactionID (@reactions) { |
1320 |
|
# Create the reaction record. |
1321 |
|
$loadReaction->Put($reactionID, $fig->reversible($reactionID)); |
1322 |
|
# Compute the reaction's URL. |
1323 |
|
my $url = HTML::reaction_link($reactionID); |
1324 |
|
# Put it in the ReactionURL table. |
1325 |
|
$loadReactionURL->Put($reactionID, $url); |
1326 |
|
# Now we need all of the reaction's compounds. We get these in two phases, |
1327 |
|
# substrates first and then products. |
1328 |
|
for my $product (0, 1) { |
1329 |
|
# Get the compounds of the current type for the current reaction. FIG will |
1330 |
|
# give us 3-tuples: [ID, stoichiometry, main-flag]. At this time we do not |
1331 |
|
# have location data in SEED, so it defaults to the empty string. |
1332 |
|
my @compounds = $fig->reaction2comp($reactionID, $product); |
1333 |
|
for my $compData (@compounds) { |
1334 |
|
# Extract the compound data from the current tuple. |
1335 |
|
my ($cid, $stoich, $main) = @{$compData}; |
1336 |
|
# Link the compound to the reaction. |
1337 |
|
$loadIsAComponentOf->Put($cid, $reactionID, $discrim++, "", $main, |
1338 |
|
$product, $stoich); |
1339 |
|
} |
1340 |
|
} |
1341 |
|
} |
1342 |
|
} |
1343 |
# Finish the load. |
# Finish the load. |
1344 |
my $retVal = $self->_FinishAll(); |
my $retVal = $self->_FinishAll(); |
1345 |
return $retVal; |
return $retVal; |
1375 |
my $fig = $self->{fig}; |
my $fig = $self->{fig}; |
1376 |
# Get the genome hash. |
# Get the genome hash. |
1377 |
my $genomeHash = $self->{genomes}; |
my $genomeHash = $self->{genomes}; |
|
my $genomeCount = (keys %{$genomeHash}); |
|
1378 |
# Create a load object for the table we're loading. |
# Create a load object for the table we're loading. |
1379 |
my $loadGenomeGroups = $self->_TableLoader('GenomeGroups', $genomeCount * 4); |
my $loadGenomeGroups = $self->_TableLoader('GenomeGroups'); |
1380 |
Trace("Beginning group data load.") if T(2); |
if ($self->{options}->{loadOnly}) { |
1381 |
|
Trace("Loading from existing files.") if T(2); |
1382 |
|
} else { |
1383 |
|
Trace("Generating group data.") if T(2); |
1384 |
# Loop through the genomes. |
# Loop through the genomes. |
1385 |
my $line; |
my $line; |
1386 |
for my $genomeID (keys %{$genomeHash}) { |
for my $genomeID (keys %{$genomeHash}) { |
1396 |
} |
} |
1397 |
close TMP; |
close TMP; |
1398 |
} |
} |
1399 |
|
} |
1400 |
|
# Finish the load. |
1401 |
|
my $retVal = $self->_FinishAll(); |
1402 |
|
return $retVal; |
1403 |
|
} |
1404 |
|
|
1405 |
|
=head3 LoadSynonymData |
1406 |
|
|
1407 |
|
C<< my $stats = $spl->LoadSynonymData(); >> |
1408 |
|
|
1409 |
|
Load the synonym groups into Sprout. |
1410 |
|
|
1411 |
|
The following relations are loaded by this method. |
1412 |
|
|
1413 |
|
SynonymGroup |
1414 |
|
IsSynonymGroupFor |
1415 |
|
|
1416 |
|
The source information for these relations is taken from the C<maps_to_id> method |
1417 |
|
of the B<FIG> object. The process starts from the features, so it is possible |
1418 |
|
that there will be duplicates in the SynonymGroup load file, since the relationship |
1419 |
|
is one-to-many toward the features. The automatic sort on primary entity relations |
1420 |
|
will fix this for us. |
1421 |
|
|
1422 |
|
=over 4 |
1423 |
|
|
1424 |
|
=item RETURNS |
1425 |
|
|
1426 |
|
Returns a statistics object for the loads. |
1427 |
|
|
1428 |
|
=back |
1429 |
|
|
1430 |
|
=cut |
1431 |
|
#: Return Type $%; |
1432 |
|
sub LoadSynonymData { |
1433 |
|
# Get this object instance. |
1434 |
|
my ($self) = @_; |
1435 |
|
# Get the FIG object. |
1436 |
|
my $fig = $self->{fig}; |
1437 |
|
# Get the genome hash. |
1438 |
|
my $genomeHash = $self->{genomes}; |
1439 |
|
# Create a load object for the table we're loading. |
1440 |
|
my $loadSynonymGroup = $self->_TableLoader('SynonymGroup'); |
1441 |
|
my $loadIsSynonymGroupFor = $self->_TableLoader('IsSynonymGroupFor'); |
1442 |
|
if ($self->{options}->{loadOnly}) { |
1443 |
|
Trace("Loading from existing files.") if T(2); |
1444 |
|
} else { |
1445 |
|
Trace("Generating synonym group data.") if T(2); |
1446 |
|
# Loop through the genomes. |
1447 |
|
for my $genomeID (sort keys %{$genomeHash}) { |
1448 |
|
Trace("Processing $genomeID.") if T(3); |
1449 |
|
# Get all of the features for this genome. The only method that does this is |
1450 |
|
# all_features_detailed, which returns extra baggage that we discard. |
1451 |
|
my $featureData = $fig->all_features_detailed($genomeID); |
1452 |
|
my @fids = map { $_->[0] } @{$featureData}; |
1453 |
|
Trace(scalar(@fids) . " features found for genome $genomeID.") if T(3); |
1454 |
|
# Loop through the feature IDs. |
1455 |
|
for my $fid (@fids) { |
1456 |
|
# Get the group for this feature. |
1457 |
|
my $synonym = $fig->maps_to_id($fid); |
1458 |
|
# Only proceed if the synonym is a real group. |
1459 |
|
if ($synonym ne $fid) { |
1460 |
|
$loadSynonymGroup->Put($synonym); |
1461 |
|
$loadIsSynonymGroupFor->Put($synonym, $fid); |
1462 |
|
} |
1463 |
|
} |
1464 |
|
} |
1465 |
|
} |
1466 |
# Finish the load. |
# Finish the load. |
1467 |
my $retVal = $self->_FinishAll(); |
my $retVal = $self->_FinishAll(); |
1468 |
return $retVal; |
return $retVal; |
1469 |
} |
} |
1470 |
|
|
1471 |
|
|
1472 |
=head2 Internal Utility Methods |
=head2 Internal Utility Methods |
1473 |
|
|
1474 |
=head3 TableLoader |
=head3 TableLoader |
1485 |
|
|
1486 |
Name of the table (relation) being loaded. |
Name of the table (relation) being loaded. |
1487 |
|
|
1488 |
=item rowCount (optional) |
=item ignore |
1489 |
|
|
1490 |
Estimated maximum number of rows in the table. |
TRUE if the table should be ignored entirely, else FALSE. |
1491 |
|
|
1492 |
=item RETURN |
=item RETURN |
1493 |
|
|
1499 |
|
|
1500 |
sub _TableLoader { |
sub _TableLoader { |
1501 |
# Get the parameters. |
# Get the parameters. |
1502 |
my ($self, $tableName, $rowCount) = @_; |
my ($self, $tableName, $ignore) = @_; |
1503 |
# Create the load object. |
# Create the load object. |
1504 |
my $retVal = ERDBLoad->new($self->{erdb}, $tableName, $self->{loadDirectory}, $rowCount); |
my $retVal = ERDBLoad->new($self->{erdb}, $tableName, $self->{loadDirectory}, $self->LoadOnly, |
1505 |
|
$ignore); |
1506 |
# Cache it in the loader list. |
# Cache it in the loader list. |
1507 |
push @{$self->{loaders}}, $retVal; |
push @{$self->{loaders}}, $retVal; |
1508 |
# Return it to the caller. |
# Return it to the caller. |
1536 |
my $retVal = Stats->new(); |
my $retVal = Stats->new(); |
1537 |
# Get the loader list. |
# Get the loader list. |
1538 |
my $loadList = $self->{loaders}; |
my $loadList = $self->{loaders}; |
1539 |
|
# Create a hash to hold the statistics objects, keyed on relation name. |
1540 |
|
my %loaderHash = (); |
1541 |
# Loop through the list, finishing the loads. Note that if the finish fails, we die |
# Loop through the list, finishing the loads. Note that if the finish fails, we die |
1542 |
# ignominiously. At some future point, we want to make the loads restartable. |
# ignominiously. At some future point, we want to make the loads more restartable. |
1543 |
while (my $loader = pop @{$loadList}) { |
while (my $loader = pop @{$loadList}) { |
1544 |
|
# Get the relation name. |
1545 |
|
my $relName = $loader->RelName; |
1546 |
|
# Check the ignore flag. |
1547 |
|
if ($loader->Ignore) { |
1548 |
|
Trace("Relation $relName not loaded.") if T(2); |
1549 |
|
} else { |
1550 |
|
# Here we really need to finish. |
1551 |
|
Trace("Finishing $relName.") if T(2); |
1552 |
my $stats = $loader->Finish(); |
my $stats = $loader->Finish(); |
1553 |
|
$loaderHash{$relName} = $stats; |
1554 |
|
} |
1555 |
|
} |
1556 |
|
# Now we loop through again, actually loading the tables. We want to finish before |
1557 |
|
# loading so that if something goes wrong at this point, all the load files are usable |
1558 |
|
# and we don't have to redo all that work. |
1559 |
|
for my $relName (sort keys %loaderHash) { |
1560 |
|
# Get the statistics for this relation. |
1561 |
|
my $stats = $loaderHash{$relName}; |
1562 |
|
# Check for a database load. |
1563 |
|
if ($self->{options}->{dbLoad}) { |
1564 |
|
# Here we want to use the load file just created to load the database. |
1565 |
|
Trace("Loading relation $relName.") if T(2); |
1566 |
|
my $newStats = $self->{sprout}->LoadUpdate(1, [$relName]); |
1567 |
|
# Accumulate the statistics from the DB load. |
1568 |
|
$stats->Accumulate($newStats); |
1569 |
|
} |
1570 |
$retVal->Accumulate($stats); |
$retVal->Accumulate($stats); |
|
my $relName = $loader->RelName; |
|
1571 |
Trace("Statistics for $relName:\n" . $stats->Show()) if T(2); |
Trace("Statistics for $relName:\n" . $stats->Show()) if T(2); |
1572 |
} |
} |
1573 |
|
} |
1574 |
# Return the load statistics. |
# Return the load statistics. |
1575 |
return $retVal; |
return $retVal; |
1576 |
} |
} |