Parent Directory
|
Revision Log
|
Patch
revision 1.33, Sat Jan 28 09:36:47 2006 UTC | revision 1.92, Mon Jun 11 18:51:23 2007 UTC | |
---|---|---|
# | Line 6 | Line 6 |
6 | use Data::Dumper; | use Data::Dumper; |
7 | use XML::Simple; | use XML::Simple; |
8 | use DBQuery; | use DBQuery; |
9 | use DBObject; | use ERDBObject; |
10 | use Stats; | use Stats; |
11 | use Time::HiRes qw(gettimeofday); | use Time::HiRes qw(gettimeofday); |
12 | use FIG; | use Digest::MD5 qw(md5_base64); |
13 | use CGI; | |
14 | ||
15 | =head1 Entity-Relationship Database Package | =head1 Entity-Relationship Database Package |
16 | ||
# | Line 58 | Line 59 |
59 | B<start-position>, which indicates where in the contig that the sequence begins. This attribute | B<start-position>, which indicates where in the contig that the sequence begins. This attribute |
60 | is implemented as the C<start_position> field in the C<IsMadeUpOf> relation. | is implemented as the C<start_position> field in the C<IsMadeUpOf> relation. |
61 | ||
62 | The database itself is described by an XML file using the F<ERDatabase.xsd> schema. In addition to | The database itself is described by an XML file. In addition to all the data required to define |
63 | all the data required to define the entities, relationships, and attributes, the schema provides | the entities, relationships, and attributes, the schema provides space for notes describing |
64 | space for notes describing the data and what it means. These notes are used by L</ShowMetaData> | the data and what it means. These notes are used by L</ShowMetaData> to generate documentation |
65 | to generate documentation for the database. | for the database. |
66 | ||
67 | Special support is provided for text searching. An entity field can be marked as <em>searchable</em>, | |
68 | in which case it will be used to generate a text search index in which the user searches for words | |
69 | in the field instead of a particular field value. | |
70 | ||
71 | Finally, every entity and relationship object has a flag indicating if it is new or old. The object | Finally, every entity and relationship object has a flag indicating if it is new or old. The object |
72 | is considered I<old> if it was loaded by the L</LoadTables> method. It is considered I<new> if it | is considered I<old> if it was loaded by the L</LoadTables> method. It is considered I<new> if it |
73 | was inserted by the L</InsertObject> method. | was inserted by the L</InsertObject> method. |
74 | ||
To facilitate testing, the ERDB module supports automatic generation of test data. This process | ||
is described in the L</GenerateEntity> and L</GenerateConnection> methods, though it is not yet | ||
fully implemented. | ||
75 | =head2 XML Database Description | =head2 XML Database Description |
76 | ||
77 | =head3 Data Types | =head3 Data Types |
# | Line 90 | Line 91 |
91 | ||
92 | 32-bit signed integer | 32-bit signed integer |
93 | ||
94 | =item counter | |
95 | ||
96 | 32-bit unsigned integer | |
97 | ||
98 | =item date | =item date |
99 | ||
100 | 64-bit unsigned integer, representing a PERL date/time value | 64-bit unsigned integer, representing a PERL date/time value |
# | Line 109 | Line 114 |
114 | compatability with certain database packages), but the only values supported are | compatability with certain database packages), but the only values supported are |
115 | 0 and 1. | 0 and 1. |
116 | ||
117 | =item id-string | |
118 | ||
119 | variable-length string, maximum 25 characters | |
120 | ||
121 | =item key-string | =item key-string |
122 | ||
123 | variable-length string, maximum 40 characters | variable-length string, maximum 40 characters |
# | Line 125 | Line 134 |
134 | ||
135 | variable-length string, maximum 255 characters | variable-length string, maximum 255 characters |
136 | ||
137 | =item hash-string | |
138 | ||
139 | variable-length string, maximum 22 characters | |
140 | ||
141 | =back | =back |
142 | ||
143 | The hash-string data type has a special meaning. The actual key passed into the loader will | |
144 | be a string, but it will be digested into a 22-character MD5 code to save space. Although the | |
145 | MD5 algorithm is not perfect, it is extremely unlikely two strings will have the same | |
146 | digest. Therefore, it is presumed the keys will be unique. When the database is actually | |
147 | in use, the hashed keys will be presented rather than the original values. For this reason, | |
148 | they should not be used for entities where the key is meaningful. | |
149 | ||
150 | =head3 Global Tags | =head3 Global Tags |
151 | ||
152 | The entire database definition must be inside a B<Database> tag. The display name of | The entire database definition must be inside a B<Database> tag. The display name of |
# | Line 170 | Line 190 |
190 | ||
191 | Name of the field. The field name should contain only letters, digits, and hyphens (C<->), | Name of the field. The field name should contain only letters, digits, and hyphens (C<->), |
192 | and the first character should be a letter. Most underlying databases are case-insensitive | and the first character should be a letter. Most underlying databases are case-insensitive |
193 | with the respect to field names, so a best practice is to use lower-case letters only. | with the respect to field names, so a best practice is to use lower-case letters only. Finally, |
194 | the name C<search-relevance> has special meaning for full-text searches and should not be | |
195 | used as a field name. | |
196 | ||
197 | =item type | =item type |
198 | ||
# | Line 189 | Line 211 |
211 | entity, the fields without a relation attribute are said to belong to the | entity, the fields without a relation attribute are said to belong to the |
212 | I<primary relation>. This relation has the same name as the entity itself. | I<primary relation>. This relation has the same name as the entity itself. |
213 | ||
214 | =item searchable | |
215 | ||
216 | If specified, then the field is a candidate for full-text searching. A single full-text | |
217 | index will be created for each relation with at least one searchable field in it. | |
218 | For best results, this option should only be used for string or text fields. | |
219 | ||
220 | =item special | |
221 | ||
222 | This attribute allows the subclass to assign special meaning for certain fields. | |
223 | The interpretation is up to the subclass itself. Currently, only entity fields | |
224 | can have this attribute. | |
225 | ||
226 | =back | =back |
227 | ||
228 | =head3 Indexes | =head3 Indexes |
229 | ||
230 | An entity can have multiple alternate indexes associated with it. The fields must | An entity can have multiple alternate indexes associated with it. The fields in an |
231 | be from the primary relation. The alternate indexes assist in ordering results | index must all be from the same relation. The alternate indexes assist in searching |
232 | from a query. A relationship can have up to two indexes-- a I<to-index> and a | on fields other than the entity ID. A relationship has at least two indexes-- a I<to-index> and a |
233 | I<from-index>. These order the results when crossing the relationship. For | I<from-index> that order the results when crossing the relationship. For |
234 | example, in the relationship C<HasContig> from C<Genome> to C<Contig>, the | example, in the relationship C<HasContig> from C<Genome> to C<Contig>, the |
235 | from-index would order the contigs of a ganome, and the to-index would order | from-index would order the contigs of a ganome, and the to-index would order |
236 | the genomes of a contig. A relationship's index must specify only fields in | the genomes of a contig. In addition, it can have zero or more alternate |
237 | indexes. A relationship's index must specify only fields in | |
238 | the relationship. | the relationship. |
239 | ||
240 | The indexes for an entity must be listed inside the B<Indexes> tag. The from-index | The alternate indexes for an entity or relationship must be listed inside the B<Indexes> tag. |
241 | of a relationship is specified using the B<FromIndex> tag; the to-index is specified | The from-index of a relationship is specified using the B<FromIndex> tag; the to-index is |
242 | using the B<ToIndex> tag. | specified using the B<ToIndex> tag. |
243 | ||
244 | Each index can contain a B<Notes> tag. In addition, it will have an B<IndexFields> | Each index can contain a B<Notes> tag. In addition, it will have an B<IndexFields> |
245 | tag containing the B<IndexField> tags. These specify, in order, the fields used in | tag containing the B<IndexField> tags. These specify, in order, the fields used in |
# | Line 222 | Line 257 |
257 | ||
258 | =back | =back |
259 | ||
260 | The B<Index>, B<FromIndex>, and B<ToIndex> tags themselves have no attributes. | The B<FromIndex>, and B<ToIndex> tags have no attributes. The B<Index> tag can |
261 | have a B<Unique> attribute. If specified, the index will be generated as a unique | |
262 | index. | |
263 | ||
264 | =head3 Object and Field Names | =head3 Object and Field Names |
265 | ||
# | Line 266 | Line 303 |
303 | ||
304 | A relationship is described by the C<Relationship> tag. Within a relationship, | A relationship is described by the C<Relationship> tag. Within a relationship, |
305 | there can be a C<Notes> tag, a C<Fields> tag containing the intersection data | there can be a C<Notes> tag, a C<Fields> tag containing the intersection data |
306 | fields, a C<FromIndex> tag containing the from-index, and a C<ToIndex> tag containing | fields, a C<FromIndex> tag containing the from-index, a C<ToIndex> tag containing |
307 | the to-index. | the to-index, and an C<Indexes> tag containing the alternate indexes. |
308 | ||
309 | The C<Relationship> tag has the following attributes. | The C<Relationship> tag has the following attributes. |
310 | ||
# | Line 300 | Line 337 |
337 | ||
338 | # Table of information about our datatypes. "sqlType" is the corresponding SQL datatype string. | # Table of information about our datatypes. "sqlType" is the corresponding SQL datatype string. |
339 | # "maxLen" is the maximum permissible length of the incoming string data used to populate a field | # "maxLen" is the maximum permissible length of the incoming string data used to populate a field |
340 | # of the specified type. "dataGen" is PERL string that will be evaluated if no test data generation | # of the specified type. "avgLen" is the average byte length for estimating |
341 | # string is specified in the field definition. "avgLen" is the average byte length for estimating | # record sizes. "sort" is the key modifier for the sort command, "notes" is a type description, |
342 | # record sizes. | # and "indexMod", if non-zero, is the number of characters to use when the field is specified in an |
343 | my %TypeTable = ( char => { sqlType => 'CHAR(1)', maxLen => 1, avgLen => 1, dataGen => "StringGen('A')" }, | # index |
344 | int => { sqlType => 'INTEGER', maxLen => 20, avgLen => 4, dataGen => "IntGen(0, 99999999)" }, | my %TypeTable = ( char => { sqlType => 'CHAR(1)', maxLen => 1, avgLen => 1, sort => "", |
345 | string => { sqlType => 'VARCHAR(255)', maxLen => 255, avgLen => 100, dataGen => "StringGen(IntGen(10,250))" }, | indexMod => 0, notes => "single ASCII character"}, |
346 | text => { sqlType => 'TEXT', maxLen => 1000000000, avgLen => 500, dataGen => "StringGen(IntGen(80,1000))" }, | int => { sqlType => 'INTEGER', maxLen => 20, avgLen => 4, sort => "n", |
347 | date => { sqlType => 'BIGINT', maxLen => 80, avgLen => 8, dataGen => "DateGen(-7, 7, IntGen(0,1400))" }, | indexMod => 0, notes => "signed 32-bit integer"}, |
348 | float => { sqlType => 'DOUBLE PRECISION', maxLen => 40, avgLen => 8, dataGen => "FloatGen(0.0, 100.0)" }, | counter => { sqlType => 'INTEGER UNSIGNED', maxLen => 20, avgLen => 4, sort => "n", |
349 | boolean => { sqlType => 'SMALLINT', maxLen => 1, avgLen => 1, dataGen => "IntGen(0, 1)" }, | indexMod => 0, notes => "unsigned 32-bit integer"}, |
350 | string => { sqlType => 'VARCHAR(255)', maxLen => 255, avgLen => 100, sort => "", | |
351 | indexMod => 0, notes => "character string, 0 to 255 characters"}, | |
352 | text => { sqlType => 'TEXT', maxLen => 1000000000, avgLen => 500, sort => "", | |
353 | indexMod => 255, notes => "character string, nearly unlimited length, only first 255 characters are indexed"}, | |
354 | date => { sqlType => 'BIGINT', maxLen => 80, avgLen => 8, sort => "n", | |
355 | indexMod => 0, notes => "signed, 64-bit integer"}, | |
356 | float => { sqlType => 'DOUBLE PRECISION', maxLen => 40, avgLen => 8, sort => "g", | |
357 | indexMod => 0, notes => "64-bit double precision floating-point number"}, | |
358 | boolean => { sqlType => 'SMALLINT', maxLen => 1, avgLen => 1, sort => "n", | |
359 | indexMod => 0, notes => "boolean value: 0 if false, 1 if true"}, | |
360 | 'hash-string' => | |
361 | { sqlType => 'VARCHAR(22)', maxLen => 22, avgLen => 22, sort => "", | |
362 | indexMod => 0, notes => "string stored in digested form, used for certain types of key fields"}, | |
363 | 'id-string' => | |
364 | { sqlType => 'VARCHAR(25)', maxLen => 25, avgLen => 25, sort => "", | |
365 | indexMod => 0, notes => "character string, 0 to 25 characters"}, | |
366 | 'key-string' => | 'key-string' => |
367 | { sqlType => 'VARCHAR(40)', maxLen => 40, avgLen => 10, dataGen => "StringGen(IntGen(10,40))" }, | { sqlType => 'VARCHAR(40)', maxLen => 40, avgLen => 10, sort => "", |
368 | indexMod => 0, notes => "character string, 0 to 40 characters"}, | |
369 | 'name-string' => | 'name-string' => |
370 | { sqlType => 'VARCHAR(80)', maxLen => 80, avgLen => 40, dataGen => "StringGen(IntGen(10,80))" }, | { sqlType => 'VARCHAR(80)', maxLen => 80, avgLen => 40, sort => "", |
371 | indexMod => 0, notes => "character string, 0 to 80 characters"}, | |
372 | 'medium-string' => | 'medium-string' => |
373 | { sqlType => 'VARCHAR(160)', maxLen => 160, avgLen => 40, dataGen => "StringGen(IntGen(10,160))" }, | { sqlType => 'VARCHAR(160)', maxLen => 160, avgLen => 40, sort => "", |
374 | indexMod => 0, notes => "character string, 0 to 160 characters"}, | |
375 | 'long-string' => | |
376 | { sqlType => 'VARCHAR(500)', maxLen => 500, avglen => 255, sort => "", | |
377 | indexMod => 0, notes => "character string, 0 to 500 characters"}, | |
378 | ); | ); |
379 | ||
380 | # Table translating arities into natural language. | # Table translating arities into natural language. |
# | Line 324 | Line 383 |
383 | 'MM' => 'many-to-many' | 'MM' => 'many-to-many' |
384 | ); | ); |
385 | ||
386 | # Table for interpreting string patterns. | # Options for XML input and output. |
387 | ||
388 | my %XmlOptions = (GroupTags => { Relationships => 'Relationship', | |
389 | Entities => 'Entity', | |
390 | Fields => 'Field', | |
391 | Indexes => 'Index', | |
392 | IndexFields => 'IndexField' | |
393 | }, | |
394 | KeyAttr => { Relationship => 'name', | |
395 | Entity => 'name', | |
396 | Field => 'name' | |
397 | }, | |
398 | SuppressEmpty => 1, | |
399 | ); | |
400 | ||
401 | my %PictureTable = ( 'A' => "abcdefghijklmnopqrstuvwxyz", | my %XmlInOpts = ( |
402 | '9' => "0123456789", | ForceArray => ['Field', 'Index', 'IndexField', 'Relationship', 'Entity'], |
403 | 'X' => "abcdefghijklmnopqrstuvwxyz0123456789", | ForceContent => 1, |
404 | 'V' => "aeiou", | NormalizeSpace => 2, |
'K' => "bcdfghjklmnoprstvwxyz" | ||
405 | ); | ); |
406 | my %XmlOutOpts = ( | |
407 | RootName => 'Database', | |
408 | XMLDecl => 1, | |
409 | ); | |
410 | ||
411 | ||
412 | =head2 Public Methods | =head2 Public Methods |
413 | ||
# | Line 402 | Line 478 |
478 | # Write the HTML heading stuff. | # Write the HTML heading stuff. |
479 | print HTMLOUT "<html>\n<head>\n<title>$title</title>\n"; | print HTMLOUT "<html>\n<head>\n<title>$title</title>\n"; |
480 | print HTMLOUT "</head>\n<body>\n"; | print HTMLOUT "</head>\n<body>\n"; |
481 | # Write the documentation. | |
482 | print HTMLOUT $self->DisplayMetaData(); | |
483 | # Close the document. | |
484 | print HTMLOUT "</body>\n</html>\n"; | |
485 | # Close the file. | |
486 | close HTMLOUT; | |
487 | } | |
488 | ||
489 | =head3 DisplayMetaData | |
490 | ||
491 | C<< my $html = $erdb->DisplayMetaData(); >> | |
492 | ||
493 | Return an HTML description of the database. This description can be used to help users create | |
494 | the data to be loaded into the relations and form queries. The output is raw includable HTML | |
495 | without any HEAD or BODY tags. | |
496 | ||
497 | =over 4 | |
498 | ||
499 | =item filename | |
500 | ||
501 | The name of the output file. | |
502 | ||
503 | =back | |
504 | ||
505 | =cut | |
506 | ||
507 | sub DisplayMetaData { | |
508 | # Get the parameters. | |
509 | my ($self) = @_; | |
510 | # Get the metadata and the title string. | |
511 | my $metadata = $self->{_metaData}; | |
512 | # Get the title string. | |
513 | my $title = $metadata->{Title}; | |
514 | # Get the entity and relationship lists. | |
515 | my $entityList = $metadata->{Entities}; | |
516 | my $relationshipList = $metadata->{Relationships}; | |
517 | # Declare the return variable. | |
518 | my $retVal = ""; | |
519 | # Open the output file. | |
520 | Trace("Building MetaData table of contents.") if T(4); | |
521 | # Here we do the table of contents. It starts as an unordered list of section names. Each | # Here we do the table of contents. It starts as an unordered list of section names. Each |
522 | # section contains an ordered list of entity or relationship subsections. | # section contains an ordered list of entity or relationship subsections. |
523 | print HTMLOUT "<ul>\n<li><a href=\"#EntitiesSection\">Entities</a>\n<ol>\n"; | $retVal .= "<ul>\n<li><a href=\"#EntitiesSection\">Entities</a>\n<ol>\n"; |
524 | # Loop through the Entities, displaying a list item for each. | # Loop through the Entities, displaying a list item for each. |
525 | foreach my $key (sort keys %{$entityList}) { | foreach my $key (sort keys %{$entityList}) { |
526 | # Display this item. | # Display this item. |
527 | print HTMLOUT "<li><a href=\"#$key\">$key</a></li>\n"; | $retVal .= "<li><a href=\"#$key\">$key</a></li>\n"; |
528 | } | } |
529 | # Close off the entity section and start the relationship section. | # Close off the entity section and start the relationship section. |
530 | print HTMLOUT "</ol></li>\n<li><a href=\"#RelationshipsSection\">Relationships</a>\n<ol>\n"; | $retVal .= "</ol></li>\n<li><a href=\"#RelationshipsSection\">Relationships</a>\n<ol>\n"; |
531 | # Loop through the Relationships. | # Loop through the Relationships. |
532 | foreach my $key (sort keys %{$relationshipList}) { | foreach my $key (sort keys %{$relationshipList}) { |
533 | # Display this item. | # Display this item. |
534 | my $relationshipTitle = _ComputeRelationshipSentence($key, $relationshipList->{$key}); | my $relationshipTitle = _ComputeRelationshipSentence($key, $relationshipList->{$key}); |
535 | print HTMLOUT "<li><a href=\"#$key\">$relationshipTitle</a></li>\n"; | $retVal .= "<li><a href=\"#$key\">$relationshipTitle</a></li>\n"; |
536 | } | } |
537 | # Close off the relationship section and list the join table section. | # Close off the relationship section and list the join table section. |
538 | print HTMLOUT "</ol></li>\n<li><a href=\"#JoinTable\">Join Table</a></li>\n"; | $retVal .= "</ol></li>\n<li><a href=\"#JoinTable\">Join Table</a></li>\n"; |
539 | # Close off the table of contents itself. | # Close off the table of contents itself. |
540 | print HTMLOUT "</ul>\n"; | $retVal .= "</ul>\n"; |
541 | # Now we start with the actual data. Denote we're starting the entity section. | # Now we start with the actual data. Denote we're starting the entity section. |
542 | print HTMLOUT "<a name=\"EntitiesSection\"></a><h2>Entities</h2>\n"; | $retVal .= "<a name=\"EntitiesSection\"></a><h2>Entities</h2>\n"; |
543 | # Loop through the entities. | # Loop through the entities. |
544 | for my $key (sort keys %{$entityList}) { | for my $key (sort keys %{$entityList}) { |
545 | Trace("Building MetaData entry for $key entity.") if T(4); | Trace("Building MetaData entry for $key entity.") if T(4); |
546 | # Create the entity header. It contains a bookmark and the entity name. | # Create the entity header. It contains a bookmark and the entity name. |
547 | print HTMLOUT "<a name=\"$key\"></a><h3>$key</h3>\n"; | $retVal .= "<a name=\"$key\"></a><h3>$key</h3>\n"; |
548 | # Get the entity data. | # Get the entity data. |
549 | my $entityData = $entityList->{$key}; | my $entityData = $entityList->{$key}; |
550 | # If there's descriptive text, display it. | # If there's descriptive text, display it. |
551 | if (my $notes = $entityData->{Notes}) { | if (my $notes = $entityData->{Notes}) { |
552 | print HTMLOUT "<p>" . _HTMLNote($notes->{content}) . "</p>\n"; | $retVal .= "<p>" . HTMLNote($notes->{content}) . "</p>\n"; |
553 | } | } |
554 | # Now we want a list of the entity's relationships. First, we set up the relationship subsection. | # See if we need a list of the entity's relationships. |
555 | print HTMLOUT "<h4>Relationships for <b>$key</b></h4>\n<ul>\n"; | my $relCount = keys %{$relationshipList}; |
556 | if ($relCount > 0) { | |
557 | # First, we set up the relationship subsection. | |
558 | $retVal .= "<h4>Relationships for <b>$key</b></h4>\n<ul>\n"; | |
559 | # Loop through the relationships. | # Loop through the relationships. |
560 | for my $relationship (sort keys %{$relationshipList}) { | for my $relationship (sort keys %{$relationshipList}) { |
561 | # Get the relationship data. | # Get the relationship data. |
# | Line 446 | Line 565 |
565 | # Get the relationship sentence and append the arity. | # Get the relationship sentence and append the arity. |
566 | my $relationshipDescription = _ComputeRelationshipSentence($relationship, $relationshipStructure); | my $relationshipDescription = _ComputeRelationshipSentence($relationship, $relationshipStructure); |
567 | # Display the relationship data. | # Display the relationship data. |
568 | print HTMLOUT "<li><a href=\"#$relationship\">$relationshipDescription</a></li>\n"; | $retVal .= "<li><a href=\"#$relationship\">$relationshipDescription</a></li>\n"; |
569 | } | } |
570 | } | } |
571 | # Close off the relationship list. | # Close off the relationship list. |
572 | print HTMLOUT "</ul>\n"; | $retVal .= "</ul>\n"; |
573 | } | |
574 | # Get the entity's relations. | # Get the entity's relations. |
575 | my $relationList = $entityData->{Relations}; | my $relationList = $entityData->{Relations}; |
576 | # Create a header for the relation subsection. | # Create a header for the relation subsection. |
577 | print HTMLOUT "<h4>Relations for <b>$key</b></h4>\n"; | $retVal .= "<h4>Relations for <b>$key</b></h4>\n"; |
578 | # Loop through the relations, displaying them. | # Loop through the relations, displaying them. |
579 | for my $relation (sort keys %{$relationList}) { | for my $relation (sort keys %{$relationList}) { |
580 | my $htmlString = _ShowRelationTable($relation, $relationList->{$relation}); | my $htmlString = _ShowRelationTable($relation, $relationList->{$relation}); |
581 | print HTMLOUT $htmlString; | $retVal .= $htmlString; |
582 | } | } |
583 | } | } |
584 | # Denote we're starting the relationship section. | # Denote we're starting the relationship section. |
585 | print HTMLOUT "<a name=\"RelationshipsSection\"></a><h2>Relationships</h2>\n"; | $retVal .= "<a name=\"RelationshipsSection\"></a><h2>Relationships</h2>\n"; |
586 | # Loop through the relationships. | # Loop through the relationships. |
587 | for my $key (sort keys %{$relationshipList}) { | for my $key (sort keys %{$relationshipList}) { |
588 | Trace("Building MetaData entry for $key relationship.") if T(4); | Trace("Building MetaData entry for $key relationship.") if T(4); |
# | Line 470 | Line 590 |
590 | my $relationshipStructure = $relationshipList->{$key}; | my $relationshipStructure = $relationshipList->{$key}; |
591 | # Create the relationship header. | # Create the relationship header. |
592 | my $headerText = _ComputeRelationshipHeading($key, $relationshipStructure); | my $headerText = _ComputeRelationshipHeading($key, $relationshipStructure); |
593 | print HTMLOUT "<h3><a name=\"$key\"></a>$headerText</h3>\n"; | $retVal .= "<h3><a name=\"$key\"></a>$headerText</h3>\n"; |
594 | # Get the entity names. | # Get the entity names. |
595 | my $fromEntity = $relationshipStructure->{from}; | my $fromEntity = $relationshipStructure->{from}; |
596 | my $toEntity = $relationshipStructure->{to}; | my $toEntity = $relationshipStructure->{to}; |
# | Line 480 | Line 600 |
600 | # since both sentences will say the same thing. | # since both sentences will say the same thing. |
601 | my $arity = $relationshipStructure->{arity}; | my $arity = $relationshipStructure->{arity}; |
602 | if ($arity eq "11") { | if ($arity eq "11") { |
603 | print HTMLOUT "<p>Each <b>$fromEntity</b> relates to at most one <b>$toEntity</b>.\n"; | $retVal .= "<p>Each <b>$fromEntity</b> relates to at most one <b>$toEntity</b>.\n"; |
604 | } else { | } else { |
605 | print HTMLOUT "<p>Each <b>$fromEntity</b> relates to multiple <b>$toEntity</b>s.\n"; | $retVal .= "<p>Each <b>$fromEntity</b> relates to multiple <b>$toEntity</b>s.\n"; |
606 | if ($arity eq "MM" && $fromEntity ne $toEntity) { | if ($arity eq "MM" && $fromEntity ne $toEntity) { |
607 | print HTMLOUT "Each <b>$toEntity</b> relates to multiple <b>$fromEntity</b>s.\n"; | $retVal .= "Each <b>$toEntity</b> relates to multiple <b>$fromEntity</b>s.\n"; |
608 | } | } |
609 | } | } |
610 | print HTMLOUT "</p>\n"; | $retVal .= "</p>\n"; |
611 | # If there are notes on this relationship, display them. | # If there are notes on this relationship, display them. |
612 | if (my $notes = $relationshipStructure->{Notes}) { | if (my $notes = $relationshipStructure->{Notes}) { |
613 | print HTMLOUT "<p>" . _HTMLNote($notes->{content}) . "</p>\n"; | $retVal .= "<p>" . HTMLNote($notes->{content}) . "</p>\n"; |
614 | } | } |
615 | # Generate the relationship's relation table. | # Generate the relationship's relation table. |
616 | my $htmlString = _ShowRelationTable($key, $relationshipStructure->{Relations}->{$key}); | my $htmlString = _ShowRelationTable($key, $relationshipStructure->{Relations}->{$key}); |
617 | print HTMLOUT $htmlString; | $retVal .= $htmlString; |
618 | } | } |
619 | Trace("Building MetaData join table.") if T(4); | Trace("Building MetaData join table.") if T(4); |
620 | # Denote we're starting the join table. | # Denote we're starting the join table. |
621 | print HTMLOUT "<a name=\"JoinTable\"></a><h3>Join Table</h3>\n"; | $retVal .= "<a name=\"JoinTable\"></a><h3>Join Table</h3>\n"; |
622 | # Create a table header. | # Create a table header. |
623 | print HTMLOUT _OpenTable("Join Table", "Source", "Target", "Join Condition"); | $retVal .= _OpenTable("Join Table", "Source", "Target", "Join Condition"); |
624 | # Loop through the joins. | # Loop through the joins. |
625 | my $joinTable = $metadata->{Joins}; | my $joinTable = $metadata->{Joins}; |
626 | my @joinKeys = keys %{$joinTable}; | my @joinKeys = keys %{$joinTable}; |
# | Line 513 | Line 633 |
633 | my $target = $self->ComputeObjectSentence($targetRelation); | my $target = $self->ComputeObjectSentence($targetRelation); |
634 | my $clause = $joinTable->{$joinKey}; | my $clause = $joinTable->{$joinKey}; |
635 | # Display them in a table row. | # Display them in a table row. |
636 | print HTMLOUT "<tr><td>$source</td><td>$target</td><td>$clause</td></tr>\n"; | $retVal .= "<tr><td>$source</td><td>$target</td><td>$clause</td></tr>\n"; |
637 | } | } |
638 | # Close the table. | # Close the table. |
639 | print HTMLOUT _CloseTable(); | $retVal .= _CloseTable(); |
640 | # Close the document. | Trace("Built MetaData HTML.") if T(3); |
641 | print HTMLOUT "</body>\n</html>\n"; | # Return the HTML. |
642 | # Close the file. | return $retVal; |
close HTMLOUT; | ||
Trace("Built MetaData web page.") if T(3); | ||
643 | } | } |
644 | ||
645 | =head3 DumpMetaData | =head3 DumpMetaData |
# | Line 539 | Line 657 |
657 | return Data::Dumper::Dumper($self->{_metaData}); | return Data::Dumper::Dumper($self->{_metaData}); |
658 | } | } |
659 | ||
660 | =head3 CreatePPO | |
661 | ||
662 | C<< ERDB::CreatePPO($erdbXMLFile, $ppoXMLFile); >> | |
663 | ||
664 | Create a PPO XML file from an ERDB data definition XML file. At the | |
665 | current time, the PPO XML file can be used to create a database with | |
666 | similar functionality. Eventually, the PPO will be able to use the | |
667 | created XML to access the live ERDB database. | |
668 | ||
669 | =over 4 | |
670 | ||
671 | =item erdbXMLFile | |
672 | ||
673 | Name of the XML data definition file for the ERDB database. This | |
674 | file must exist. | |
675 | ||
676 | =item ppoXMLFile | |
677 | ||
678 | Output file for the PPO XML definition. If this file exists, it | |
679 | will be overwritten. | |
680 | ||
681 | =back | |
682 | ||
683 | =cut | |
684 | ||
685 | sub CreatePPO { | |
686 | # Get the parameters. | |
687 | my ($erdbXMLFile, $ppoXMLFile) = @_; | |
688 | # First, we want to slurp in the ERDB XML file in its raw form. | |
689 | my $xml = ReadMetaXML($erdbXMLFile); | |
690 | # Create a variable to hold all of the objects in the PPO project. | |
691 | my @objects = (); | |
692 | # Get the relationship hash. | |
693 | my $relationships = $xml->{Relationships}; | |
694 | # Loop through the entities. | |
695 | my $entities = $xml->{Entities}; | |
696 | for my $entityName (keys %{$entities}) { | |
697 | # Get the entity's data structures. | |
698 | my $entityObject = $entities->{$entityName}; | |
699 | # We put the object's fields in here, according to their type. | |
700 | my (@object_refs, @scalars, @indexes, @arrays); | |
701 | # Create the ID field for the entity. We get the key type from the | |
702 | # entity object and compute the corresponding SQL type. | |
703 | my $type = $TypeTable{$entityObject->{keyType}}->{sqlType}; | |
704 | push @scalars, { label => 'id', type => $type }; | |
705 | # Loop through the entity fields. | |
706 | for my $fieldName ( keys %{$entityObject->{Fields}} ) { | |
707 | # Get the field object. | |
708 | my $fieldObject = $entityObject->{Fields}->{$fieldName}; | |
709 | # Convert it to a scalar tag. | |
710 | my $scalar = _CreatePPOField($fieldName, $fieldObject); | |
711 | # If we have a relation, this field is stored in an array. | |
712 | # otherwise, it is a scalar. The array tag has scalars | |
713 | # stored as an XML array. In ERDB, there is only ever one, | |
714 | # but PPO can have more. | |
715 | my $relation = $fieldObject->{relation}; | |
716 | if ($relation) { | |
717 | push @arrays, { scalar => [$scalar] }; | |
718 | } else { | |
719 | push @scalars, $scalar; | |
720 | } | |
721 | } | |
722 | # Loop through the relationships. If this entity is the to-entity | |
723 | # on a relationship of 1M arity, then it is implemented as a PPO | |
724 | # object reference. | |
725 | for my $relationshipName (keys %{$relationships}) { | |
726 | # Get the relationship data. | |
727 | my $relationshipData = $relationships->{$relationshipName}; | |
728 | # If we have a from for this entity and an arity of 1M, we | |
729 | # have an object reference. | |
730 | if ($relationshipData->{to} eq $entityName && | |
731 | $relationshipData->{arity} eq '1M') { | |
732 | # Build the object reference tag. | |
733 | push @object_refs, { label => $relationshipName, | |
734 | type => $relationshipData->{from} }; | |
735 | } | |
736 | } | |
737 | # Create the indexes. | |
738 | my $indexList = $entityObject->{Indexes}; | |
739 | push @indexes, map { _CreatePPOIndex($_) } @{$indexList}; | |
740 | # Build the object XML tree. | |
741 | my $object = { label => $entityName, | |
742 | object_ref => \@object_refs, | |
743 | scalar => \@scalars, | |
744 | index => \@indexes, | |
745 | array => \@arrays | |
746 | }; | |
747 | # Push the object onto the objects list. | |
748 | push @objects, $object; | |
749 | } | |
750 | # Loop through the relationships, searching for MMs. The 1Ms were | |
751 | # already handled by the entity search above. | |
752 | for my $relationshipName (keys %{$relationships}) { | |
753 | # Get this relationship's object. | |
754 | my $relationshipObject = $relationships->{$relationshipName}; | |
755 | # Only proceed if it's many-to-many. | |
756 | if ($relationshipObject->{arity} eq 'MM') { | |
757 | # Create the tag lists for the relationship object. | |
758 | my (@object_refs, @scalars, @indexes); | |
759 | # The relationship will be created as an object with object | |
760 | # references for its links to the participating entities. | |
761 | my %links = ( from_link => $relationshipObject->{from}, | |
762 | to_link => $relationshipObject->{to} ); | |
763 | for my $link (keys %links) { | |
764 | # Create an object_ref tag for this piece of the | |
765 | # relationship (from or to). | |
766 | my $object_ref = { label => $link, | |
767 | type => $links{$link} }; | |
768 | push @object_refs, $object_ref; | |
769 | } | |
770 | # Loop through the intersection data fields, creating scalar tags. | |
771 | # There are no fancy array tags in a relationship. | |
772 | for my $fieldName (keys %{$relationshipObject->{Fields}}) { | |
773 | my $fieldObject = $relationshipObject->{Fields}->{$fieldName}; | |
774 | push @scalars, _CreatePPOField($fieldName, $fieldObject); | |
775 | } | |
776 | # Finally, the indexes: currently we cannot support the to-index and | |
777 | # from-index in PPO, so we just process the alternate indexes. | |
778 | my $indexList = $relationshipObject->{Indexes}; | |
779 | push @indexes, map { _CreatePPOIndex($_) } @{$indexList}; | |
780 | # Wrap up all the stuff about this relationship. | |
781 | my $object = { label => $relationshipName, | |
782 | scalar => \@scalars, | |
783 | object_ref => \@object_refs, | |
784 | index => \@indexes | |
785 | }; | |
786 | # Push it into the object list. | |
787 | push @objects, $object; | |
788 | } | |
789 | } | |
790 | # Compute a title. | |
791 | my $title; | |
792 | if ($erdbXMLFile =~ /(\/|^)([^\/]+)DBD\.xml/) { | |
793 | # Here we have a standard file name we can use for a title. | |
794 | $title = $2; | |
795 | } else { | |
796 | # Here the file name is non-standard, so we carve up the | |
797 | # database title. | |
798 | $title = $xml->{Title}->{content}; | |
799 | $title =~ s/\s\.,//g; | |
800 | } | |
801 | # Wrap up the XML as a project. | |
802 | my $ppoXML = { project => { label => $title, | |
803 | object => \@objects }}; | |
804 | # Write out the results. | |
805 | my $ppoString = XML::Simple::XMLout($ppoXML, | |
806 | AttrIndent => 1, | |
807 | KeepRoot => 1); | |
808 | Tracer::PutFile($ppoXMLFile, [ $ppoString ]); | |
809 | } | |
810 | ||
811 | =head3 FindIndexForEntity | |
812 | ||
813 | C<< my $indexFound = ERDB::FindIndexForEntity($xml, $entityName, $attributeName); >> | |
814 | ||
815 | This method locates the entry in an entity's index list that begins with the | |
816 | specified attribute name. If the entity has no index list, one will be | |
817 | created. This method works on raw XML, not a live ERDB object. | |
818 | ||
819 | =over 4 | |
820 | ||
821 | =item xml | |
822 | ||
823 | The raw XML structure defining the database. | |
824 | ||
825 | =item entityName | |
826 | ||
827 | The name of the relevant entity. | |
828 | ||
829 | =item attributeName | |
830 | ||
831 | The name of the attribute relevant to the search. | |
832 | ||
833 | =item RETURN | |
834 | ||
835 | The numerical index in the index list of the index entry for the specified entity and | |
836 | attribute, or C<undef> if no such index exists. | |
837 | ||
838 | =back | |
839 | ||
840 | =cut | |
841 | ||
842 | sub FindIndexForEntity { | |
843 | # Get the parameters. | |
844 | my ($xml, $entityName, $attributeName) = @_; | |
845 | # Declare the return variable. | |
846 | my $retVal; | |
847 | # Get the named entity. | |
848 | my $entityData = $xml->{Entities}->{$entityName}; | |
849 | if (! $entityData) { | |
850 | Confess("Entity $entityName not found in DBD structure."); | |
851 | } else { | |
852 | # Insure it has an index list. | |
853 | if (! exists $entityData->{Indexes}) { | |
854 | $entityData->{Indexes} = []; | |
855 | } else { | |
856 | # Search for the desired index. | |
857 | my $indexList = $entityData->{Indexes}; | |
858 | my $n = scalar @{$indexList}; | |
859 | Trace("Searching $n indexes in index list for $entityName.") if T(2); | |
860 | # We use an indexed FOR here because we're returning an | |
861 | # index number instead of an object. We do THAT so we can | |
862 | # delete the index from the list if needed. | |
863 | for (my $i = 0; $i < $n && !defined($retVal); $i++) { | |
864 | my $index = $indexList->[$i]; | |
865 | my $fields = $index->{IndexFields}; | |
866 | # Technically this IF should be safe (that is, we are guaranteed | |
867 | # the existence of a "$fields->[0]"), because when we load the XML | |
868 | # we have SuppressEmpty specified. | |
869 | if ($fields->[0]->{name} eq $attributeName) { | |
870 | $retVal = $i; | |
871 | } | |
872 | } | |
873 | } | |
874 | } | |
875 | Trace("Index for $attributeName of $entityName found at position $retVal.") if defined($retVal) && T(3); | |
876 | Trace("Index for $attributeName not found in $entityName.") if !defined($retVal) && T(3); | |
877 | # Return the result. | |
878 | return $retVal; | |
879 | } | |
880 | ||
881 | =head3 CreateTables | =head3 CreateTables |
882 | ||
883 | C<< $erdb->CreateTables(); >> | C<< $erdb->CreateTables(); >> |
# | Line 558 | Line 897 |
897 | # Loop through the relations. | # Loop through the relations. |
898 | for my $relationName (@relNames) { | for my $relationName (@relNames) { |
899 | # Create a table for this relation. | # Create a table for this relation. |
900 | $self->CreateTable($relationName); | $self->CreateTable($relationName, 1); |
901 | Trace("Relation $relationName created.") if T(2); | Trace("Relation $relationName created.") if T(2); |
902 | } | } |
903 | } | } |
# | Line 626 | Line 965 |
965 | Trace("Creating table $relationName: $fieldThing") if T(2); | Trace("Creating table $relationName: $fieldThing") if T(2); |
966 | $dbh->create_table(tbl => $relationName, flds => $fieldThing, estimates => $estimation); | $dbh->create_table(tbl => $relationName, flds => $fieldThing, estimates => $estimation); |
967 | Trace("Relation $relationName created in database.") if T(2); | Trace("Relation $relationName created in database.") if T(2); |
968 | # If we want to build the indexes, we do it here. | # If we want to build the indexes, we do it here. Note that the full-text search |
969 | # index will not be built until the table has been loaded. | |
970 | if ($indexFlag) { | if ($indexFlag) { |
971 | $self->CreateIndex($relationName); | $self->CreateIndex($relationName); |
972 | } | } |
# | Line 677 | Line 1017 |
1017 | my $oldString = $fieldList->[$i]; | my $oldString = $fieldList->[$i]; |
1018 | if (length($oldString) > $maxLen) { | if (length($oldString) > $maxLen) { |
1019 | # Here it's too big, so we truncate it. | # Here it's too big, so we truncate it. |
1020 | Trace("Truncating field $i in relation $relName to $maxLen characters from \"$oldString\".") if T(1); | Trace("Truncating field $i ($fieldTypes->[$i]->{name}) in relation $relName to $maxLen characters from \"$oldString\".") if T(1); |
1021 | $fieldList->[$i] = substr $oldString, 0, $maxLen; | $fieldList->[$i] = substr $oldString, 0, $maxLen; |
1022 | $retVal++; | $retVal++; |
1023 | } | } |
# | Line 687 | Line 1027 |
1027 | return $retVal; | return $retVal; |
1028 | } | } |
1029 | ||
1030 | =head3 DigestFields | |
1031 | ||
1032 | C<< $erdb->DigestFields($relName, $fieldList); >> | |
1033 | ||
1034 | Digest the strings in the field list that correspond to data type C<hash-string> in the | |
1035 | specified relation. | |
1036 | ||
1037 | =over 4 | |
1038 | ||
1039 | =item relName | |
1040 | ||
1041 | Name of the relation to which the fields belong. | |
1042 | ||
1043 | =item fieldList | |
1044 | ||
1045 | List of field contents to be loaded into the relation. | |
1046 | ||
1047 | =back | |
1048 | ||
1049 | =cut | |
1050 | #: Return Type ; | |
1051 | sub DigestFields { | |
1052 | # Get the parameters. | |
1053 | my ($self, $relName, $fieldList) = @_; | |
1054 | # Get the relation definition. | |
1055 | my $relData = $self->_FindRelation($relName); | |
1056 | # Get the list of field descriptors. | |
1057 | my $fieldTypes = $relData->{Fields}; | |
1058 | my $fieldCount = scalar @{$fieldTypes}; | |
1059 | # Loop through the two lists. | |
1060 | for (my $i = 0; $i < $fieldCount; $i++) { | |
1061 | # Get the type of the current field. | |
1062 | my $fieldType = $fieldTypes->[$i]->{type}; | |
1063 | # If it's a hash string, digest it in place. | |
1064 | if ($fieldType eq 'hash-string') { | |
1065 | $fieldList->[$i] = $self->DigestKey($fieldList->[$i]); | |
1066 | } | |
1067 | } | |
1068 | } | |
1069 | ||
1070 | =head3 DigestKey | |
1071 | ||
1072 | C<< my $digested = $erdb->DigestKey($keyValue); >> | |
1073 | ||
1074 | Return the digested value of a symbolic key. The digested value can then be plugged into a | |
1075 | key-based search into a table with key-type hash-string. | |
1076 | ||
1077 | Currently the digesting process is independent of the database structure, but that may not | |
1078 | always be the case, so this is an instance method instead of a static method. | |
1079 | ||
1080 | =over 4 | |
1081 | ||
1082 | =item keyValue | |
1083 | ||
1084 | Key value to digest. | |
1085 | ||
1086 | =item RETURN | |
1087 | ||
1088 | Digested value of the key. | |
1089 | ||
1090 | =back | |
1091 | ||
1092 | =cut | |
1093 | ||
1094 | sub DigestKey { | |
1095 | # Get the parameters. | |
1096 | my ($self, $keyValue) = @_; | |
1097 | # Compute the digest. | |
1098 | my $retVal = md5_base64($keyValue); | |
1099 | # Return the result. | |
1100 | return $retVal; | |
1101 | } | |
1102 | ||
1103 | =head3 CreateIndex | =head3 CreateIndex |
1104 | ||
1105 | C<< $erdb->CreateIndex($relationName); >> | C<< $erdb->CreateIndex($relationName); >> |
# | Line 710 | Line 1123 |
1123 | for my $indexName (keys %{$indexHash}) { | for my $indexName (keys %{$indexHash}) { |
1124 | my $indexData = $indexHash->{$indexName}; | my $indexData = $indexHash->{$indexName}; |
1125 | # Get the index's field list. | # Get the index's field list. |
1126 | my @fieldList = _FixNames(@{$indexData->{IndexFields}}); | my @rawFields = @{$indexData->{IndexFields}}; |
1127 | # Get a hash of the relation's field types. | |
1128 | my %types = map { $_->{name} => $_->{type} } @{$relationData->{Fields}}; | |
1129 | # We need to check for text fields so we can append a length limitation for them. To do | |
1130 | # that, we need the relation's field list. | |
1131 | my $relFields = $relationData->{Fields}; | |
1132 | for (my $i = 0; $i <= $#rawFields; $i++) { | |
1133 | # Get the field type. | |
1134 | my $field = $rawFields[$i]; | |
1135 | my $type = $types{$field}; | |
1136 | # Ask if it requires using prefix notation for the index. | |
1137 | my $mod = $TypeTable{$type}->{indexMod}; | |
1138 | Trace("Field $field ($i) in $relationName has type $type and indexMod $mod.") if T(3); | |
1139 | if ($mod) { | |
1140 | # Append the prefix length to the field name, | |
1141 | $rawFields[$i] .= "($mod)"; | |
1142 | } | |
1143 | } | |
1144 | my @fieldList = _FixNames(@rawFields); | |
1145 | my $flds = join(', ', @fieldList); | my $flds = join(', ', @fieldList); |
1146 | # Get the index's uniqueness flag. | # Get the index's uniqueness flag. |
1147 | my $unique = (exists $indexData->{Unique} ? $indexData->{Unique} : 'false'); | my $unique = (exists $indexData->{Unique} ? 'unique' : undef); |
1148 | # Create the index. | # Create the index. |
1149 | my $rv = $dbh->create_index(idx => $indexName, tbl => $relationName, | my $rv = $dbh->create_index(idx => $indexName, tbl => $relationName, |
1150 | flds => $flds, unique => $unique); | flds => $flds, kind => $unique); |
1151 | if ($rv) { | if ($rv) { |
1152 | Trace("Index created: $indexName for $relationName ($flds)") if T(1); | Trace("Index created: $indexName for $relationName ($flds)") if T(1); |
1153 | } else { | } else { |
# | Line 725 | Line 1156 |
1156 | } | } |
1157 | } | } |
1158 | ||
1159 | =head3 LoadTables | =head3 GetSecondaryFields |
C<< my $stats = $erdb->LoadTables($directoryName, $rebuild); >> | ||
1160 | ||
1161 | This method will load the database tables from a directory. The tables must already have been created | C<< my %fieldTuples = $erdb->GetSecondaryFields($entityName); >> |
in the database. (This can be done by calling L</CreateTables>.) The caller passes in a directory name; | ||
all of the relations to be loaded must have a file in the directory with the same name as the relation | ||
(optionally with a suffix of C<.dtx>). Each file must be a tab-delimited table of field values. Each | ||
line of the file will be loaded as a row of the target relation table. The field values should be in | ||
the same order as the fields in the relation tables generated by L</ShowMetaData>. The old data is | ||
erased before the new data is loaded in. | ||
1162 | ||
1163 | A certain amount of translation automatically takes place. Ctrl-M characters are deleted, and | This method will return a list of the name and type of each of the secondary |
1164 | tab and new-line characters inside a field are escaped as C<\t> and C<\n>, respectively. Dates must | fields for a specified entity. Secondary fields are stored in two-column tables |
1165 | be entered as a Unix timestamp, that is, as an integer number of seconds since the base epoch. | in addition to the primary entity table. This enables the field to have no value |
1166 | or to have multiple values. | |
1167 | ||
1168 | =over 4 | =over 4 |
1169 | ||
1170 | =item directoryName | =item entityName |
Name of the directory containing the relation files to be loaded. | ||
=item rebuild | ||
1171 | ||
1172 | TRUE if the tables should be dropped and rebuilt, else FALSE. This is, unfortunately, the | Name of the entity whose secondary fields are desired. |
only way to erase existing data in the tables, since the TRUNCATE command is not supported | ||
by all of the DB engines we use. | ||
1173 | ||
1174 | =item RETURN | =item RETURN |
1175 | ||
1176 | Returns a statistical object describing the number of records read and a list of the error messages. | Returns a hash mapping the field names to their field types. |
1177 | ||
1178 | =back | =back |
1179 | ||
1180 | =cut | =cut |
1181 | ||
1182 | sub LoadTables { | sub GetSecondaryFields { |
1183 | # Get the parameters. | # Get the parameters. |
1184 | my ($self, $directoryName, $rebuild) = @_; | my ($self, $entityName) = @_; |
# Start the timer. | ||
my $startTime = gettimeofday; | ||
# Clean any trailing slash from the directory name. | ||
$directoryName =~ s!/\\$!!; | ||
1185 | # Declare the return variable. | # Declare the return variable. |
1186 | my $retVal = Stats->new(); | my %retVal = (); |
1187 | # Get the relation names. | # Look for the entity. |
1188 | my @relNames = $self->GetTableNames(); | my $table = $self->GetFieldTable($entityName); |
1189 | for my $relationName (@relNames) { | # Loop through the fields, pulling out the secondaries. |
1190 | # Try to load this relation. | for my $field (sort keys %{$table}) { |
1191 | my $result = $self->_LoadRelation($directoryName, $relationName, $rebuild); | if ($table->{$field}->{relation} ne $entityName) { |
1192 | # Accumulate the statistics. | # Here we have a secondary field. |
1193 | $retVal->Accumulate($result); | $retVal{$field} = $table->{$field}->{type}; |
1194 | } | } |
1195 | # Add the duration of the load to the statistical object. | } |
1196 | $retVal->Add('duration', gettimeofday - $startTime); | # Return the result. |
1197 | # Return the accumulated statistics. | return %retVal; |
return $retVal; | ||
1198 | } | } |
1199 | ||
1200 | =head3 GetFieldRelationName | |
1201 | ||
1202 | =head3 GetTableNames | C<< my $name = $erdb->GetFieldRelationName($objectName, $fieldName); >> |
1203 | ||
1204 | C<< my @names = $erdb->GetTableNames; >> | Return the name of the relation containing a specified field. |
1205 | ||
1206 | Return a list of the relations required to implement this database. | =over 4 |
1207 | ||
1208 | =cut | =item objectName |
1209 | ||
1210 | sub GetTableNames { | Name of the entity or relationship containing the field. |
# Get the parameters. | ||
my ($self) = @_; | ||
# Get the relation list from the metadata. | ||
my $relationTable = $self->{_metaData}->{RelationTable}; | ||
# Return the relation names. | ||
return keys %{$relationTable}; | ||
} | ||
1211 | ||
1212 | =head3 GetEntityTypes | =item fieldName |
1213 | ||
1214 | C<< my @names = $erdb->GetEntityTypes; >> | Name of the relevant field in that entity or relationship. |
1215 | ||
1216 | Return a list of the entity type names. | =item RETURN |
1217 | ||
1218 | Returns the name of the database relation containing the field, or C<undef> if | |
1219 | the field does not exist. | |
1220 | ||
1221 | =back | |
1222 | ||
1223 | =cut | =cut |
1224 | ||
1225 | sub GetEntityTypes { | sub GetFieldRelationName { |
1226 | # Get the database object. | # Get the parameters. |
1227 | my ($self) = @_; | my ($self, $objectName, $fieldName) = @_; |
1228 | # Get the entity list from the metadata object. | # Declare the return variable. |
1229 | my $entityList = $self->{_metaData}->{Entities}; | my $retVal; |
1230 | # Return the list of entity names in alphabetical order. | # Get the object field table. |
1231 | return sort keys %{$entityList}; | my $table = $self->GetFieldTable($objectName); |
1232 | # Only proceed if the field exists. | |
1233 | if (exists $table->{$fieldName}) { | |
1234 | # Determine the name of the relation that contains this field. | |
1235 | $retVal = $table->{$fieldName}->{relation}; | |
1236 | } | |
1237 | # Return the result. | |
1238 | return $retVal; | |
1239 | } | } |
1240 | ||
1241 | =head3 IsEntity | =head3 DeleteValue |
1242 | ||
1243 | C<< my $numDeleted = $erdb->DeleteValue($entityName, $id, $fieldName, $fieldValue); >> | |
1244 | ||
1245 | Delete secondary field values from the database. This method can be used to delete all | |
1246 | values of a specified field for a particular entity instance, or only a single value. | |
1247 | ||
1248 | Secondary fields are stored in two-column relations separate from an entity's primary | |
1249 | table, and as a result a secondary field can legitimately have no value or multiple | |
1250 | values. Therefore, it makes sense to talk about deleting secondary fields where it | |
1251 | would not make sense for primary fields. | |
1252 | ||
1253 | =over 4 | |
1254 | ||
1255 | =item entityName | |
1256 | ||
1257 | Name of the entity from which the fields are to be deleted. | |
1258 | ||
1259 | =item id | |
1260 | ||
1261 | ID of the entity instance to be processed. If the instance is not found, this | |
1262 | method will have no effect. If C<undef> is specified, all values for all of | |
1263 | the entity instances will be deleted. | |
1264 | ||
1265 | =item fieldName | |
1266 | ||
1267 | Name of the field whose values are to be deleted. | |
1268 | ||
1269 | =item fieldValue (optional) | |
1270 | ||
1271 | Value to be deleted. If not specified, then all values of the specified field | |
1272 | will be deleted for the entity instance. If specified, then only the values which | |
1273 | match this parameter will be deleted. | |
1274 | ||
1275 | =item RETURN | |
1276 | ||
1277 | Returns the number of rows deleted. | |
1278 | ||
1279 | =back | |
1280 | ||
1281 | =cut | |
1282 | ||
1283 | sub DeleteValue { | |
1284 | # Get the parameters. | |
1285 | my ($self, $entityName, $id, $fieldName, $fieldValue) = @_; | |
1286 | # Declare the return value. | |
1287 | my $retVal = 0; | |
1288 | # We need to set up an SQL command to do the deletion. First, we | |
1289 | # find the name of the field's relation. | |
1290 | my $table = $self->GetFieldTable($entityName); | |
1291 | my $field = $table->{$fieldName}; | |
1292 | my $relation = $field->{relation}; | |
1293 | # Make sure this is a secondary field. | |
1294 | if ($relation eq $entityName) { | |
1295 | Confess("Cannot delete values of $fieldName for $entityName."); | |
1296 | } else { | |
1297 | # Set up the SQL command to delete all values. | |
1298 | my $sql = "DELETE FROM $relation"; | |
1299 | # Build the filter. | |
1300 | my @filters = (); | |
1301 | my @parms = (); | |
1302 | # Check for a filter by ID. | |
1303 | if (defined $id) { | |
1304 | push @filters, "id = ?"; | |
1305 | push @parms, $id; | |
1306 | } | |
1307 | # Check for a filter by value. | |
1308 | if (defined $fieldValue) { | |
1309 | push @filters, "$fieldName = ?"; | |
1310 | push @parms, $fieldValue; | |
1311 | } | |
1312 | # Append the filters to the command. | |
1313 | if (@filters) { | |
1314 | $sql .= " WHERE " . join(" AND ", @filters); | |
1315 | } | |
1316 | # Execute the command. | |
1317 | my $dbh = $self->{_dbh}; | |
1318 | $retVal = $dbh->SQL($sql, 0, @parms); | |
1319 | } | |
1320 | # Return the result. | |
1321 | return $retVal; | |
1322 | } | |
1323 | ||
1324 | =head3 LoadTables | |
1325 | ||
1326 | C<< my $stats = $erdb->LoadTables($directoryName, $rebuild); >> | |
1327 | ||
1328 | This method will load the database tables from a directory. The tables must already have been created | |
1329 | in the database. (This can be done by calling L</CreateTables>.) The caller passes in a directory name; | |
1330 | all of the relations to be loaded must have a file in the directory with the same name as the relation | |
1331 | (optionally with a suffix of C<.dtx>). Each file must be a tab-delimited table of field values. Each | |
1332 | line of the file will be loaded as a row of the target relation table. The field values should be in | |
1333 | the same order as the fields in the relation tables generated by L</ShowMetaData>. The old data is | |
1334 | erased before the new data is loaded in. | |
1335 | ||
1336 | A certain amount of translation automatically takes place. Ctrl-M characters are deleted, and | |
1337 | tab and new-line characters inside a field are escaped as C<\t> and C<\n>, respectively. Dates must | |
1338 | be entered as a Unix timestamp, that is, as an integer number of seconds since the base epoch. | |
1339 | ||
1340 | =over 4 | |
1341 | ||
1342 | =item directoryName | |
1343 | ||
1344 | Name of the directory containing the relation files to be loaded. | |
1345 | ||
1346 | =item rebuild | |
1347 | ||
1348 | TRUE if the tables should be dropped and rebuilt, else FALSE. This is, unfortunately, the | |
1349 | only way to erase existing data in the tables, since the TRUNCATE command is not supported | |
1350 | by all of the DB engines we use. | |
1351 | ||
1352 | =item RETURN | |
1353 | ||
1354 | Returns a statistical object describing the number of records read and a list of the error messages. | |
1355 | ||
1356 | =back | |
1357 | ||
1358 | =cut | |
1359 | ||
1360 | sub LoadTables { | |
1361 | # Get the parameters. | |
1362 | my ($self, $directoryName, $rebuild) = @_; | |
1363 | # Start the timer. | |
1364 | my $startTime = gettimeofday; | |
1365 | # Clean any trailing slash from the directory name. | |
1366 | $directoryName =~ s!/\\$!!; | |
1367 | # Declare the return variable. | |
1368 | my $retVal = Stats->new(); | |
1369 | # Get the relation names. | |
1370 | my @relNames = $self->GetTableNames(); | |
1371 | for my $relationName (@relNames) { | |
1372 | # Try to load this relation. | |
1373 | my $result = $self->_LoadRelation($directoryName, $relationName, $rebuild); | |
1374 | # Accumulate the statistics. | |
1375 | $retVal->Accumulate($result); | |
1376 | } | |
1377 | # Add the duration of the load to the statistical object. | |
1378 | $retVal->Add('duration', gettimeofday - $startTime); | |
1379 | # Return the accumulated statistics. | |
1380 | return $retVal; | |
1381 | } | |
1382 | ||
1383 | ||
1384 | =head3 GetTableNames | |
1385 | ||
1386 | C<< my @names = $erdb->GetTableNames; >> | |
1387 | ||
1388 | Return a list of the relations required to implement this database. | |
1389 | ||
1390 | =cut | |
1391 | ||
1392 | sub GetTableNames { | |
1393 | # Get the parameters. | |
1394 | my ($self) = @_; | |
1395 | # Get the relation list from the metadata. | |
1396 | my $relationTable = $self->{_metaData}->{RelationTable}; | |
1397 | # Return the relation names. | |
1398 | return keys %{$relationTable}; | |
1399 | } | |
1400 | ||
1401 | =head3 GetEntityTypes | |
1402 | ||
1403 | C<< my @names = $erdb->GetEntityTypes; >> | |
1404 | ||
1405 | Return a list of the entity type names. | |
1406 | ||
1407 | =cut | |
1408 | ||
1409 | sub GetEntityTypes { | |
1410 | # Get the database object. | |
1411 | my ($self) = @_; | |
1412 | # Get the entity list from the metadata object. | |
1413 | my $entityList = $self->{_metaData}->{Entities}; | |
1414 | # Return the list of entity names in alphabetical order. | |
1415 | return sort keys %{$entityList}; | |
1416 | } | |
1417 | ||
1418 | =head3 GetDataTypes | |
1419 | ||
1420 | C<< my %types = ERDB::GetDataTypes(); >> | |
1421 | ||
1422 | Return a table of ERDB data types. The table returned is a hash of hashes. | |
1423 | The keys of the big hash are the datatypes. Each smaller hash has several | |
1424 | values used to manage the data. The most interesting is the SQL type (key | |
1425 | C<sqlType>) and the descriptive node (key C<notes>). | |
1426 | ||
1427 | Note that changing the values in the smaller hashes will seriously break | |
1428 | things, so this data should be treated as read-only. | |
1429 | ||
1430 | =cut | |
1431 | ||
1432 | sub GetDataTypes { | |
1433 | return %TypeTable; | |
1434 | } | |
1435 | ||
1436 | ||
1437 | =head3 IsEntity | |
1438 | ||
1439 | C<< my $flag = $erdb->IsEntity($entityName); >> | C<< my $flag = $erdb->IsEntity($entityName); >> |
1440 | ||
# | Line 848 | Line 1463 |
1463 | ||
1464 | =head3 Get | =head3 Get |
1465 | ||
1466 | C<< my $query = $erdb->Get(\@objectNames, $filterClause, $param1, $param2, ..., $paramN); >> | C<< my $query = $erdb->Get(\@objectNames, $filterClause, \@params); >> |
1467 | ||
1468 | This method returns a query object for entities of a specified type using a specified filter. | This method returns a query object for entities of a specified type using a specified filter. |
1469 | The filter is a standard WHERE/ORDER BY clause with question marks as parameter markers and each | The filter is a standard WHERE/ORDER BY clause with question marks as parameter markers and each |
# | Line 856 | Line 1471 |
1471 | following call requests all B<Genome> objects for the genus specified in the variable | following call requests all B<Genome> objects for the genus specified in the variable |
1472 | $genus. | $genus. |
1473 | ||
1474 | C<< $query = $erdb->Get(['Genome'], "Genome(genus) = ?", $genus); >> | C<< $query = $erdb->Get(['Genome'], "Genome(genus) = ?", [$genus]); >> |
1475 | ||
1476 | The WHERE clause contains a single question mark, so there is a single additional | The WHERE clause contains a single question mark, so there is a single additional |
1477 | parameter representing the parameter value. It would also be possible to code | parameter representing the parameter value. It would also be possible to code |
# | Line 873 | Line 1488 |
1488 | It is possible to specify multiple entity and relationship names in order to retrieve more than | It is possible to specify multiple entity and relationship names in order to retrieve more than |
1489 | one object's data at the same time, which allows highly complex joined queries. For example, | one object's data at the same time, which allows highly complex joined queries. For example, |
1490 | ||
1491 | C<< $query = $erdb->Get(['Genome', 'ComesFrom', 'Source'], "Genome(genus) = ?", $genus); >> | C<< $query = $erdb->Get(['Genome', 'ComesFrom', 'Source'], "Genome(genus) = ?", [$genus]); >> |
1492 | ||
1493 | If multiple names are specified, then the query processor will automatically determine a | If multiple names are specified, then the query processor will automatically determine a |
1494 | join path between the entities and relationships. The algorithm used is very simplistic. | join path between the entities and relationships. The algorithm used is very simplistic. |
1495 | In particular, you can't specify any entity or relationship more than once, and if a | In particular, if a relationship is recursive, the path is determined by the order in which |
1496 | relationship is recursive, the path is determined by the order in which the entity | the entity and the relationship appear. For example, consider a recursive relationship |
1497 | and the relationship appear. For example, consider a recursive relationship B<IsParentOf> | B<IsParentOf> which relates B<People> objects to other B<People> objects. If the join path is |
which relates B<People> objects to other B<People> objects. If the join path is | ||
1498 | coded as C<['People', 'IsParentOf']>, then the people returned will be parents. If, however, | coded as C<['People', 'IsParentOf']>, then the people returned will be parents. If, however, |
1499 | the join path is C<['IsParentOf', 'People']>, then the people returned will be children. | the join path is C<['IsParentOf', 'People']>, then the people returned will be children. |
1500 | ||
1501 | If an entity or relationship is mentioned twice, the name for the second occurrence will | |
1502 | be suffixed with C<2>, the third occurrence will be suffixed with C<3>, and so forth. So, | |
1503 | for example, if we have C<['Feature', 'HasContig', 'Contig', 'HasContig']>, then the | |
1504 | B<to-link> field of the first B<HasContig> is specified as C<HasContig(to-link)>, while | |
1505 | the B<to-link> field of the second B<HasContig> is specified as C<HasContig2(to-link)>. | |
1506 | ||
1507 | =over 4 | =over 4 |
1508 | ||
1509 | =item objectNames | =item objectNames |
# | Line 913 | Line 1533 |
1533 | filter clause in general; however, odd things may happen if a sort field is from a secondary | filter clause in general; however, odd things may happen if a sort field is from a secondary |
1534 | relation. | relation. |
1535 | ||
1536 | =item param1, param2, ..., paramN | Finally, you can limit the number of rows returned by adding a LIMIT clause. The LIMIT must |
1537 | be the last thing in the filter clause, and it contains only the word "LIMIT" followed by | |
1538 | a positive number. So, for example | |
1539 | ||
1540 | C<< "Genome(genus) = ? ORDER BY Genome(species) LIMIT 10" >> | |
1541 | ||
1542 | Parameter values to be substituted into the filter clause. | will only return the first ten genomes for the specified genus. The ORDER BY clause is not |
1543 | required. For example, to just get the first 10 genomes in the B<Genome> table, you could | |
1544 | use | |
1545 | ||
1546 | C<< "LIMIT 10" >> | |
1547 | ||
1548 | =item params | |
1549 | ||
1550 | Reference to a list of parameter values to be substituted into the filter clause. | |
1551 | ||
1552 | =item RETURN | =item RETURN |
1553 | ||
# | Line 927 | Line 1559 |
1559 | ||
1560 | sub Get { | sub Get { |
1561 | # Get the parameters. | # Get the parameters. |
1562 | my ($self, $objectNames, $filterClause, @params) = @_; | my ($self, $objectNames, $filterClause, $params) = @_; |
1563 | # Construct the SELECT statement. The general pattern is | # Process the SQL stuff. |
1564 | # | my ($suffix, $mappedNameListRef, $mappedNameHashRef) = |
1565 | # SELECT name1.*, name2.*, ... nameN.* FROM name1, name2, ... nameN | $self->_SetupSQL($objectNames, $filterClause); |
1566 | # | # Create the query. |
1567 | my $dbh = $self->{_dbh}; | my $command = "SELECT DISTINCT " . join(".*, ", @{$mappedNameListRef}) . |
1568 | my $command = "SELECT DISTINCT " . join('.*, ', @{$objectNames}) . ".* FROM " . | ".* $suffix"; |
1569 | join(', ', @{$objectNames}); | my $sth = $self->_GetStatementHandle($command, $params); |
1570 | # Check for a filter clause. | # Now we create the relation map, which enables DBQuery to determine the order, name |
1571 | if ($filterClause) { | # and mapped name for each object in the query. |
1572 | # Here we have one, so we convert its field names and add it to the query. First, | my @relationMap = (); |
1573 | # We create a copy of the filter string we can work with. | for my $mappedName (@{$mappedNameListRef}) { |
1574 | my $filterString = $filterClause; | push @relationMap, [$mappedName, $mappedNameHashRef->{$mappedName}]; |
# Next, we sort the object names by length. This helps protect us from finding | ||
# object names inside other object names when we're doing our search and replace. | ||
my @sortedNames = sort { length($b) - length($a) } @{$objectNames}; | ||
# We will also keep a list of conditions to add to the WHERE clause in order to link | ||
# entities and relationships as well as primary relations to secondary ones. | ||
my @joinWhere = (); | ||
# The final preparatory step is to create a hash table of relation names. The | ||
# table begins with the relation names already in the SELECT command. | ||
my %fromNames = (); | ||
for my $objectName (@sortedNames) { | ||
$fromNames{$objectName} = 1; | ||
} | ||
# We are ready to begin. We loop through the object names, replacing each | ||
# object name's field references by the corresponding SQL field reference. | ||
# Along the way, if we find a secondary relation, we will need to add it | ||
# to the FROM clause. | ||
for my $objectName (@sortedNames) { | ||
# Get the length of the object name plus 2. This is the value we add to the | ||
# size of the field name to determine the size of the field reference as a | ||
# whole. | ||
my $nameLength = 2 + length $objectName; | ||
# Get the object's field list. | ||
my $fieldList = $self->_GetFieldTable($objectName); | ||
# Find the field references for this object. | ||
while ($filterString =~ m/$objectName\(([^)]*)\)/g) { | ||
# At this point, $1 contains the field name, and the current position | ||
# is set immediately after the final parenthesis. We pull out the name of | ||
# the field and the position and length of the field reference as a whole. | ||
my $fieldName = $1; | ||
my $len = $nameLength + length $fieldName; | ||
my $pos = pos($filterString) - $len; | ||
# Insure the field exists. | ||
if (!exists $fieldList->{$fieldName}) { | ||
Confess("Field $fieldName not found for object $objectName."); | ||
} else { | ||
# Get the field's relation. | ||
my $relationName = $fieldList->{$fieldName}->{relation}; | ||
# Insure the relation is in the FROM clause. | ||
if (!exists $fromNames{$relationName}) { | ||
# Add the relation to the FROM clause. | ||
$command .= ", $relationName"; | ||
# Create its join sub-clause. | ||
push @joinWhere, "$objectName.id = $relationName.id"; | ||
# Denote we have it available for future fields. | ||
$fromNames{$relationName} = 1; | ||
} | ||
# Form an SQL field reference from the relation name and the field name. | ||
my $sqlReference = "$relationName." . _FixName($fieldName); | ||
# Put it into the filter string in place of the old value. | ||
substr($filterString, $pos, $len) = $sqlReference; | ||
# Reposition the search. | ||
pos $filterString = $pos + length $sqlReference; | ||
} | ||
} | ||
} | ||
# The next step is to join the objects together. We only need to do this if there | ||
# is more than one object in the object list. We start with the first object and | ||
# run through the objects after it. Note also that we make a safety copy of the | ||
# list before running through it. | ||
my @objectList = @{$objectNames}; | ||
my $lastObject = shift @objectList; | ||
# Get the join table. | ||
my $joinTable = $self->{_metaData}->{Joins}; | ||
# Loop through the object list. | ||
for my $thisObject (@objectList) { | ||
# Look for a join. | ||
my $joinKey = "$lastObject/$thisObject"; | ||
if (!exists $joinTable->{$joinKey}) { | ||
# Here there's no join, so we throw an error. | ||
Confess("No join exists to connect from $lastObject to $thisObject."); | ||
} else { | ||
# Get the join clause and add it to the WHERE list. | ||
push @joinWhere, $joinTable->{$joinKey}; | ||
# Save this object as the last object for the next iteration. | ||
$lastObject = $thisObject; | ||
} | ||
} | ||
# Now we need to handle the whole ORDER BY / LIMIT thing. The important part | ||
# here is we want the filter clause to be empty if there's no WHERE filter. | ||
# We'll put the ORDER BY / LIMIT clauses in the following variable. | ||
my $orderClause = ""; | ||
# Locate the ORDER BY or LIMIT verbs (if any). We use a non-greedy | ||
# operator so that we find the first occurrence of either verb. | ||
if ($filterString =~ m/^(.*?)\s*(ORDER BY|LIMIT)/g) { | ||
# Here we have an ORDER BY or LIMIT verb. Split it off of the filter string. | ||
my $pos = pos $filterString; | ||
$orderClause = $2 . substr($filterString, $pos); | ||
$filterString = $1; | ||
} | ||
# Add the filter and the join clauses (if any) to the SELECT command. | ||
if ($filterString) { | ||
push @joinWhere, "($filterString)"; | ||
} | ||
if (@joinWhere) { | ||
$command .= " WHERE " . join(' AND ', @joinWhere); | ||
} | ||
# Add the sort or limit clause (if any) to the SELECT command. | ||
if ($orderClause) { | ||
$command .= " $orderClause"; | ||
} | ||
1575 | } | } |
Trace("SQL query: $command") if T(SQL => 4); | ||
Trace("PARMS: '" . (join "', '", @params) . "'") if (T(SQL => 4) && (@params > 0)); | ||
my $sth = $dbh->prepare_command($command); | ||
# Execute it with the parameters bound in. | ||
$sth->execute(@params) || Confess("SELECT error" . $sth->errstr()); | ||
1576 | # Return the statement object. | # Return the statement object. |
1577 | my $retVal = DBQuery::_new($self, $sth, @{$objectNames}); | my $retVal = DBQuery::_new($self, $sth, \@relationMap); |
1578 | return $retVal; | return $retVal; |
1579 | } | } |
1580 | ||
=head3 Delete | ||
1581 | ||
C<< my $stats = $erdb->Delete($entityName, $objectID); >> | ||
1582 | ||
1583 | Delete an entity instance from the database. The instance is deleted along with all entity and | =head3 Search |
1584 | relationship instances dependent on it. The idea of dependence here is recursive. An object is | |
1585 | always dependent on itself. An object is dependent if it is a 1-to-many or many-to-many | C<< my $query = $erdb->Search($searchExpression, $idx, \@objectNames, $filterClause, \@params); >> |
1586 | relationship connected to a dependent entity or the "to" entity connected to a 1-to-many | |
1587 | dependent relationship. | Perform a full text search with filtering. The search will be against a specified object |
1588 | in the object name list. That object will get an extra field containing the search | |
1589 | relevance. Note that except for the search expression, the parameters of this method are | |
1590 | the same as those for L</Get> and follow the same rules. | |
1591 | ||
1592 | =over 4 | =over 4 |
1593 | ||
1594 | =item entityName | =item searchExpression |
1595 | ||
1596 | Name of the entity type for the instance being deleted. | Boolean search expression for the text fields of the target object. The default mode for |
1597 | a Boolean search expression is OR, but we want the default to be AND, so we will | |
1598 | add a C<+> operator to each word with no other operator before it. | |
1599 | ||
1600 | =item objectID | =item idx |
1601 | ||
1602 | ID of the entity instance to be deleted. If the ID contains a wild card character (C<%>), | Index in the I<$objectNames> list of the table to be searched in full-text mode. |
1603 | then it is presumed to by a LIKE pattern. | |
1604 | =item objectNames | |
1605 | ||
1606 | List containing the names of the entity and relationship objects to be retrieved. | |
1607 | ||
1608 | =item filterClause | |
1609 | ||
1610 | WHERE clause (without the WHERE) to be used to filter and sort the query. The WHERE clause can | |
1611 | be parameterized with parameter markers (C<?>). Each field used in the WHERE clause must be | |
1612 | specified in the standard form B<I<objectName>(I<fieldName>)>. Any parameters specified | |
1613 | in the filter clause should be added to the parameter list as additional parameters. The | |
1614 | fields in a filter clause can come from primary entity relations, relationship relations, | |
1615 | or secondary entity relations; however, all of the entities and relationships involved must | |
1616 | be included in the list of object names. | |
1617 | ||
1618 | =item testFlag | =item params |
1619 | ||
1620 | If TRUE, the delete statements will be traced without being executed. | Reference to a list of parameter values to be substituted into the filter clause. |
1621 | ||
1622 | =item RETURN | =item RETURN |
1623 | ||
1624 | Returns a statistics object indicating how many records of each particular table were | Returns a query object for the specified search. |
deleted. | ||
1625 | ||
1626 | =back | =back |
1627 | ||
1628 | =cut | =cut |
1629 | #: Return Type $%; | |
1630 | sub Delete { | sub Search { |
1631 | # Get the parameters. | # Get the parameters. |
1632 | my ($self, $entityName, $objectID, $testFlag) = @_; | my ($self, $searchExpression, $idx, $objectNames, $filterClause, $params) = @_; |
1633 | # Declare the return variable. | # Declare the return variable. |
1634 | my $retVal = Stats->new(); | my $retVal; |
1635 | # Get the DBKernel object. | # Create a safety copy of the parameter list. Note we have to be careful to insure |
1636 | # a parameter list exists before we copy it. | |
1637 | my @myParams = (); | |
1638 | if (defined $params) { | |
1639 | @myParams = @{$params}; | |
1640 | } | |
1641 | # Get the first object's structure so we have access to the searchable fields. | |
1642 | my $object1Name = $objectNames->[$idx]; | |
1643 | my $object1Structure = $self->_GetStructure($object1Name); | |
1644 | # Get the field list. | |
1645 | if (! exists $object1Structure->{searchFields}) { | |
1646 | Confess("No searchable index for $object1Name."); | |
1647 | } else { | |
1648 | # Get the field list. | |
1649 | my @fields = @{$object1Structure->{searchFields}}; | |
1650 | # Clean the search expression. | |
1651 | my $actualKeywords = $self->CleanKeywords($searchExpression); | |
1652 | # Prefix a "+" to each uncontrolled word. This converts the default | |
1653 | # search mode from OR to AND. | |
1654 | $actualKeywords =~ s/(^|\s)(\w|")/$1\+$2/g; | |
1655 | Trace("Actual keywords for search are\n$actualKeywords") if T(3); | |
1656 | # We need two match expressions, one for the filter clause and one in the | |
1657 | # query itself. Both will use a parameter mark, so we need to push the | |
1658 | # search expression onto the front of the parameter list twice. | |
1659 | unshift @myParams, $actualKeywords, $actualKeywords; | |
1660 | # Build the match expression. | |
1661 | my @matchFilterFields = map { "$object1Name." . _FixName($_) } @fields; | |
1662 | my $matchClause = "MATCH (" . join(", ", @matchFilterFields) . ") AGAINST (? IN BOOLEAN MODE)"; | |
1663 | # Process the SQL stuff. | |
1664 | my ($suffix, $mappedNameListRef, $mappedNameHashRef) = | |
1665 | $self->_SetupSQL($objectNames, $filterClause, $matchClause); | |
1666 | # Create the query. Note that the match clause is inserted at the front of | |
1667 | # the select fields. | |
1668 | my $command = "SELECT DISTINCT $matchClause, " . join(".*, ", @{$mappedNameListRef}) . | |
1669 | ".* $suffix"; | |
1670 | my $sth = $self->_GetStatementHandle($command, \@myParams); | |
1671 | # Now we create the relation map, which enables DBQuery to determine the order, name | |
1672 | # and mapped name for each object in the query. | |
1673 | my @relationMap = _RelationMap($mappedNameHashRef, $mappedNameListRef); | |
1674 | # Return the statement object. | |
1675 | $retVal = DBQuery::_new($self, $sth, \@relationMap, $object1Name); | |
1676 | } | |
1677 | return $retVal; | |
1678 | } | |
1679 | ||
1680 | =head3 GetFlat | |
1681 | ||
1682 | C<< my @list = $erdb->GetFlat(\@objectNames, $filterClause, \@parameterList, $field); >> | |
1683 | ||
1684 | This is a variation of L</GetAll> that asks for only a single field per record and | |
1685 | returns a single flattened list. | |
1686 | ||
1687 | =over 4 | |
1688 | ||
1689 | =item objectNames | |
1690 | ||
1691 | List containing the names of the entity and relationship objects to be retrieved. | |
1692 | ||
1693 | =item filterClause | |
1694 | ||
1695 | WHERE/ORDER BY clause (without the WHERE) to be used to filter and sort the query. The WHERE clause can | |
1696 | be parameterized with parameter markers (C<?>). Each field used must be specified in the standard form | |
1697 | B<I<objectName>(I<fieldName>)>. Any parameters specified in the filter clause should be added to the | |
1698 | parameter list as additional parameters. The fields in a filter clause can come from primary | |
1699 | entity relations, relationship relations, or secondary entity relations; however, all of the | |
1700 | entities and relationships involved must be included in the list of object names. | |
1701 | ||
1702 | =item parameterList | |
1703 | ||
1704 | List of the parameters to be substituted in for the parameters marks in the filter clause. | |
1705 | ||
1706 | =item field | |
1707 | ||
1708 | Name of the field to be used to get the elements of the list returned. | |
1709 | ||
1710 | =item RETURN | |
1711 | ||
1712 | Returns a list of values. | |
1713 | ||
1714 | =back | |
1715 | ||
1716 | =cut | |
1717 | #: Return Type @; | |
1718 | sub GetFlat { | |
1719 | # Get the parameters. | |
1720 | my ($self, $objectNames, $filterClause, $parameterList, $field) = @_; | |
1721 | # Construct the query. | |
1722 | my $query = $self->Get($objectNames, $filterClause, $parameterList); | |
1723 | # Create the result list. | |
1724 | my @retVal = (); | |
1725 | # Loop through the records, adding the field values found to the result list. | |
1726 | while (my $row = $query->Fetch()) { | |
1727 | push @retVal, $row->Value($field); | |
1728 | } | |
1729 | # Return the list created. | |
1730 | return @retVal; | |
1731 | } | |
1732 | ||
1733 | =head3 SpecialFields | |
1734 | ||
1735 | C<< my %specials = $erdb->SpecialFields($entityName); >> | |
1736 | ||
1737 | Return a hash mapping special fields in the specified entity to the value of their | |
1738 | C<special> attribute. This enables the subclass to get access to the special field | |
1739 | attributes without needed to plumb the internal ERDB data structures. | |
1740 | ||
1741 | =over 4 | |
1742 | ||
1743 | =item entityName | |
1744 | ||
1745 | Name of the entity whose special fields are desired. | |
1746 | ||
1747 | =item RETURN | |
1748 | ||
1749 | Returns a hash. The keys of the hash are the special field names, and the values | |
1750 | are the values from each special field's C<special> attribute. | |
1751 | ||
1752 | =back | |
1753 | ||
1754 | =cut | |
1755 | ||
1756 | sub SpecialFields { | |
1757 | # Get the parameters. | |
1758 | my ($self, $entityName) = @_; | |
1759 | # Declare the return variable. | |
1760 | my %retVal = (); | |
1761 | # Find the entity's data structure. | |
1762 | my $entityData = $self->{_metaData}->{Entities}->{$entityName}; | |
1763 | # Loop through its fields, adding each special field to the return hash. | |
1764 | my $fieldHash = $entityData->{Fields}; | |
1765 | for my $fieldName (keys %{$fieldHash}) { | |
1766 | my $fieldData = $fieldHash->{$fieldName}; | |
1767 | if (exists $fieldData->{special}) { | |
1768 | $retVal{$fieldName} = $fieldData->{special}; | |
1769 | } | |
1770 | } | |
1771 | # Return the result. | |
1772 | return %retVal; | |
1773 | } | |
1774 | ||
1775 | =head3 Delete | |
1776 | ||
1777 | C<< my $stats = $erdb->Delete($entityName, $objectID, %options); >> | |
1778 | ||
1779 | Delete an entity instance from the database. The instance is deleted along with all entity and | |
1780 | relationship instances dependent on it. The definition of I<dependence> is recursive. | |
1781 | ||
1782 | An object is always dependent on itself. An object is dependent if it is a 1-to-many or many-to-many | |
1783 | relationship connected to a dependent entity or if it is the "to" entity connected to a 1-to-many | |
1784 | dependent relationship. | |
1785 | ||
1786 | =over 4 | |
1787 | ||
1788 | =item entityName | |
1789 | ||
1790 | Name of the entity type for the instance being deleted. | |
1791 | ||
1792 | =item objectID | |
1793 | ||
1794 | ID of the entity instance to be deleted. If the ID contains a wild card character (C<%>), | |
1795 | then it is presumed to by a LIKE pattern. | |
1796 | ||
1797 | =item options | |
1798 | ||
1799 | A hash detailing the options for this delete operation. | |
1800 | ||
1801 | =item RETURN | |
1802 | ||
1803 | Returns a statistics object indicating how many records of each particular table were | |
1804 | deleted. | |
1805 | ||
1806 | =back | |
1807 | ||
1808 | The permissible options for this method are as follows. | |
1809 | ||
1810 | =over 4 | |
1811 | ||
1812 | =item testMode | |
1813 | ||
1814 | If TRUE, then the delete statements will be traced, but no changes will be made to the database. | |
1815 | ||
1816 | =item keepRoot | |
1817 | ||
1818 | If TRUE, then the entity instances will not be deleted, only the dependent records. | |
1819 | ||
1820 | =back | |
1821 | ||
1822 | =cut | |
1823 | #: Return Type $%; | |
1824 | sub Delete { | |
1825 | # Get the parameters. | |
1826 | my ($self, $entityName, $objectID, %options) = @_; | |
1827 | # Declare the return variable. | |
1828 | my $retVal = Stats->new(); | |
1829 | # Get the DBKernel object. | |
1830 | my $db = $self->{_dbh}; | my $db = $self->{_dbh}; |
1831 | # We're going to generate all the paths branching out from the starting entity. One of | # We're going to generate all the paths branching out from the starting entity. One of |
1832 | # the things we have to be careful about is preventing loops. We'll use a hash to | # the things we have to be careful about is preventing loops. We'll use a hash to |
# | Line 1104 | Line 1840 |
1840 | # FROM-relationships and entities. | # FROM-relationships and entities. |
1841 | my @fromPathList = (); | my @fromPathList = (); |
1842 | my @toPathList = (); | my @toPathList = (); |
1843 | # This final hash is used to remember what work still needs to be done. We push paths | # This final list is used to remember what work still needs to be done. We push paths |
1844 | # onto the list, then pop them off to extend the paths. We prime it with the starting | # onto the list, then pop them off to extend the paths. We prime it with the starting |
1845 | # point. Note that we will work hard to insure that the last item on a path in the | # point. Note that we will work hard to insure that the last item on a path in the |
1846 | # TODO list is always an entity. | # to-do list is always an entity. |
1847 | my @todoList = ([$entityName]); | my @todoList = ([$entityName]); |
1848 | while (@todoList) { | while (@todoList) { |
1849 | # Get the current path. | # Get the current path. |
# | Line 1115 | Line 1851 |
1851 | # Copy it into a list. | # Copy it into a list. |
1852 | my @stackedPath = @{$current}; | my @stackedPath = @{$current}; |
1853 | # Pull off the last item on the path. It will always be an entity. | # Pull off the last item on the path. It will always be an entity. |
1854 | my $entityName = pop @stackedPath; | my $myEntityName = pop @stackedPath; |
1855 | # Add it to the alreadyFound list. | # Add it to the alreadyFound list. |
1856 | $alreadyFound{$entityName} = 1; | $alreadyFound{$myEntityName} = 1; |
1857 | # Figure out if we need to delete this entity. | |
1858 | if ($myEntityName ne $entityName || ! $options{keepRoot}) { | |
1859 | # Get the entity data. | # Get the entity data. |
1860 | my $entityData = $self->_GetStructure($entityName); | my $entityData = $self->_GetStructure($myEntityName); |
1861 | # The first task is to loop through the entity's relation. A DELETE command will | # Loop through the entity's relations. A DELETE command will be needed for each of them. |
# be needed for each of them. | ||
1862 | my $relations = $entityData->{Relations}; | my $relations = $entityData->{Relations}; |
1863 | for my $relation (keys %{$relations}) { | for my $relation (keys %{$relations}) { |
1864 | my @augmentedList = (@stackedPath, $relation); | my @augmentedList = (@stackedPath, $relation); |
1865 | push @fromPathList, \@augmentedList; | push @fromPathList, \@augmentedList; |
1866 | } | } |
1867 | } | |
1868 | # Now we need to look for relationships connected to this entity. | # Now we need to look for relationships connected to this entity. |
1869 | my $relationshipList = $self->{_metaData}->{Relationships}; | my $relationshipList = $self->{_metaData}->{Relationships}; |
1870 | for my $relationshipName (keys %{$relationshipList}) { | for my $relationshipName (keys %{$relationshipList}) { |
1871 | my $relationship = $relationshipList->{$relationshipName}; | my $relationship = $relationshipList->{$relationshipName}; |
1872 | # Check the FROM field. We're only interested if it's us. | # Check the FROM field. We're only interested if it's us. |
1873 | if ($relationship->{from} eq $entityName) { | if ($relationship->{from} eq $myEntityName) { |
1874 | # Add the path to this relationship. | # Add the path to this relationship. |
1875 | my @augmentedList = (@stackedPath, $entityName, $relationshipName); | my @augmentedList = (@stackedPath, $myEntityName, $relationshipName); |
1876 | push @fromPathList, \@augmentedList; | push @fromPathList, \@augmentedList; |
1877 | # Check the arity. If it's MM we're done. If it's 1M | # Check the arity. If it's MM we're done. If it's 1M |
1878 | # and the target hasn't been seen yet, we want to | # and the target hasn't been seen yet, we want to |
# | Line 1146 | Line 1884 |
1884 | # the current entity, so we need to stack it. | # the current entity, so we need to stack it. |
1885 | my @stackList = (@augmentedList, $toEntity); | my @stackList = (@augmentedList, $toEntity); |
1886 | push @fromPathList, \@stackList; | push @fromPathList, \@stackList; |
1887 | } else { | |
1888 | Trace("$toEntity ignored because it occurred previously.") if T(4); | |
1889 | } | } |
1890 | } | } |
1891 | } | } |
1892 | # Now check the TO field. In this case only the relationship needs | # Now check the TO field. In this case only the relationship needs |
1893 | # deletion. | # deletion. |
1894 | if ($relationship->{to} eq $entityName) { | if ($relationship->{to} eq $myEntityName) { |
1895 | my @augmentedList = (@stackedPath, $entityName, $relationshipName); | my @augmentedList = (@stackedPath, $myEntityName, $relationshipName); |
1896 | push @toPathList, \@augmentedList; | push @toPathList, \@augmentedList; |
1897 | } | } |
1898 | } | } |
1899 | } | } |
1900 | # Create the first qualifier for the WHERE clause. This selects the | # Create the first qualifier for the WHERE clause. This selects the |
1901 | # keys of the primary entity records to be deleted. When we're deleting | # keys of the primary entity records to be deleted. When we're deleting |
1902 | # from a dependent table, we construct a join page from the first qualifier | # from a dependent table, we construct a join path from the first qualifier |
1903 | # to the table containing the dependent records to delete. | # to the table containing the dependent records to delete. |
1904 | my $qualifier = ($objectID =~ /%/ ? "LIKE ?" : "= ?"); | my $qualifier = ($objectID =~ /%/ ? "LIKE ?" : "= ?"); |
1905 | # We need to make two passes. The first is through the to-list, and | # We need to make two passes. The first is through the to-list, and |
# | Line 1171 | Line 1911 |
1911 | for my $keyName ('to_link', 'from_link') { | for my $keyName ('to_link', 'from_link') { |
1912 | # Get the list for this key. | # Get the list for this key. |
1913 | my @pathList = @{$stackList{$keyName}}; | my @pathList = @{$stackList{$keyName}}; |
1914 | Trace(scalar(@pathList) . " entries in path list for $keyName.") if T(3); | |
1915 | # Loop through this list. | # Loop through this list. |
1916 | while (my $path = pop @pathList) { | while (my $path = pop @pathList) { |
1917 | # Get the table whose rows are to be deleted. | # Get the table whose rows are to be deleted. |
1918 | my @pathTables = @{$path}; | my @pathTables = @{$path}; |
1919 | # Start the DELETE statement. | # Start the DELETE statement. We need to call DBKernel because the |
1920 | # syntax of a DELETE-USING varies among DBMSs. | |
1921 | my $target = $pathTables[$#pathTables]; | my $target = $pathTables[$#pathTables]; |
1922 | my $stmt = "DELETE FROM $target"; | my $stmt = $db->SetUsing(@pathTables); |
# If there's more than just the one table, we need a USING clause. | ||
if (@pathTables > 1) { | ||
$stmt .= " USING " . join(", ", @pathTables[0 .. ($#pathTables - 1)]); | ||
} | ||
1923 | # Now start the WHERE. The first thing is the ID field from the starting table. That | # Now start the WHERE. The first thing is the ID field from the starting table. That |
1924 | # starting table will either be the entity relation or one of the entity's | # starting table will either be the entity relation or one of the entity's |
1925 | # sub-relations. | # sub-relations. |
# | Line 1191 | Line 1929 |
1929 | # Connect the current relationship to the preceding entity. | # Connect the current relationship to the preceding entity. |
1930 | my ($entity, $rel) = @pathTables[$i-1,$i]; | my ($entity, $rel) = @pathTables[$i-1,$i]; |
1931 | # The style of connection depends on the direction of the relationship. | # The style of connection depends on the direction of the relationship. |
1932 | $stmt .= " AND $entity.id = $rel.from_link"; | $stmt .= " AND $entity.id = $rel.$keyName"; |
1933 | if ($i + 1 <= $#pathTables) { | if ($i + 1 <= $#pathTables) { |
1934 | # Here there's a next entity, so connect that to the relationship's | # Here there's a next entity, so connect that to the relationship's |
1935 | # to-link. | # to-link. |
1936 | my $entity2 = $pathTables[$i+1]; | my $entity2 = $pathTables[$i+1]; |
1937 | $stmt .= " AND $rel.$keyName = $entity2.id"; | $stmt .= " AND $rel.to_link = $entity2.id"; |
1938 | } | } |
1939 | } | } |
1940 | # Now we have our desired DELETE statement. | # Now we have our desired DELETE statement. |
1941 | if ($testFlag) { | if ($options{testMode}) { |
1942 | # Here the user wants to trace without executing. | # Here the user wants to trace without executing. |
1943 | Trace($stmt) if T(0); | Trace($stmt) if T(0); |
1944 | } else { | } else { |
1945 | # Here we can delete. Note that the SQL method dies with a confessing | # Here we can delete. Note that the SQL method dies with a confession |
1946 | # if an error occurs, so we just go ahead and do it. | # if an error occurs, so we just go ahead and do it. |
1947 | Trace("Executing delete: $stmt") if T(3); | Trace("Executing delete from $target using '$objectID'.") if T(3); |
1948 | my $rv = $db->SQL($stmt, 0, [$objectID]); | my $rv = $db->SQL($stmt, 0, $objectID); |
1949 | # Accumulate the statistics for this delete. The only rows deleted | # Accumulate the statistics for this delete. The only rows deleted |
1950 | # are from the target table, so we use its name to record the | # are from the target table, so we use its name to record the |
1951 | # statistic. | # statistic. |
# | Line 1219 | Line 1957 |
1957 | return $retVal; | return $retVal; |
1958 | } | } |
1959 | ||
1960 | =head3 Disconnect | |
1961 | ||
1962 | C<< $erdb->Disconnect($relationshipName, $originEntityName, $originEntityID); >> | |
1963 | ||
1964 | Disconnect an entity instance from all the objects to which it is related. This | |
1965 | will delete each relationship instance that connects to the specified entity. | |
1966 | ||
1967 | =over 4 | |
1968 | ||
1969 | =item relationshipName | |
1970 | ||
1971 | Name of the relationship whose instances are to be deleted. | |
1972 | ||
1973 | =item originEntityName | |
1974 | ||
1975 | Name of the entity that is to be disconnected. | |
1976 | ||
1977 | =item originEntityID | |
1978 | ||
1979 | ID of the entity that is to be disconnected. | |
1980 | ||
1981 | =back | |
1982 | ||
1983 | =cut | |
1984 | ||
1985 | sub Disconnect { | |
1986 | # Get the parameters. | |
1987 | my ($self, $relationshipName, $originEntityName, $originEntityID) = @_; | |
1988 | # Get the relationship descriptor. | |
1989 | my $structure = $self->_GetStructure($relationshipName); | |
1990 | # Insure we have a relationship. | |
1991 | if (! exists $structure->{from}) { | |
1992 | Confess("$relationshipName is not a relationship in the database."); | |
1993 | } else { | |
1994 | # Get the database handle. | |
1995 | my $dbh = $self->{_dbh}; | |
1996 | # We'll set this value to 1 if we find our entity. | |
1997 | my $found = 0; | |
1998 | # Loop through the ends of the relationship. | |
1999 | for my $dir ('from', 'to') { | |
2000 | if ($structure->{$dir} eq $originEntityName) { | |
2001 | # Delete all relationship instances on this side of the entity instance. | |
2002 | Trace("Disconnecting in $dir direction with ID \"$originEntityID\"."); | |
2003 | $dbh->SQL("DELETE FROM $relationshipName WHERE ${dir}_link = ?", 0, $originEntityID); | |
2004 | $found = 1; | |
2005 | } | |
2006 | } | |
2007 | # Insure we found the entity on at least one end. | |
2008 | if (! $found) { | |
2009 | Confess("Entity \"$originEntityName\" does not use $relationshipName."); | |
2010 | } | |
2011 | } | |
2012 | } | |
2013 | ||
2014 | =head3 DeleteRow | |
2015 | ||
2016 | C<< $erdb->DeleteRow($relationshipName, $fromLink, $toLink, \%values); >> | |
2017 | ||
2018 | Delete a row from a relationship. In most cases, only the from-link and to-link are | |
2019 | needed; however, for relationships with intersection data values can be specified | |
2020 | for the other fields using a hash. | |
2021 | ||
2022 | =over 4 | |
2023 | ||
2024 | =item relationshipName | |
2025 | ||
2026 | Name of the relationship from which the row is to be deleted. | |
2027 | ||
2028 | =item fromLink | |
2029 | ||
2030 | ID of the entity instance in the From direction. | |
2031 | ||
2032 | =item toLink | |
2033 | ||
2034 | ID of the entity instance in the To direction. | |
2035 | ||
2036 | =item values | |
2037 | ||
2038 | Reference to a hash of other values to be used for filtering the delete. | |
2039 | ||
2040 | =back | |
2041 | ||
2042 | =cut | |
2043 | ||
2044 | sub DeleteRow { | |
2045 | # Get the parameters. | |
2046 | my ($self, $relationshipName, $fromLink, $toLink, $values) = @_; | |
2047 | # Create a hash of all the filter information. | |
2048 | my %filter = ('from-link' => $fromLink, 'to-link' => $toLink); | |
2049 | if (defined $values) { | |
2050 | for my $key (keys %{$values}) { | |
2051 | $filter{$key} = $values->{$key}; | |
2052 | } | |
2053 | } | |
2054 | # Build an SQL statement out of the hash. | |
2055 | my @filters = (); | |
2056 | my @parms = (); | |
2057 | for my $key (keys %filter) { | |
2058 | push @filters, _FixName($key) . " = ?"; | |
2059 | push @parms, $filter{$key}; | |
2060 | } | |
2061 | Trace("Parms for delete row are " . join(", ", map { "\"$_\"" } @parms) . ".") if T(SQL => 4); | |
2062 | my $command = "DELETE FROM $relationshipName WHERE " . | |
2063 | join(" AND ", @filters); | |
2064 | # Execute it. | |
2065 | my $dbh = $self->{_dbh}; | |
2066 | $dbh->SQL($command, undef, @parms); | |
2067 | } | |
2068 | ||
2069 | =head3 DeleteLike | |
2070 | ||
2071 | C<< my $deleteCount = $erdb->DeleteLike($relName, $filter, \@parms); >> | |
2072 | ||
2073 | Delete all the relationship rows that satisfy a particular filter condition. Unlike a normal | |
2074 | filter, only fields from the relationship itself can be used. | |
2075 | ||
2076 | =over 4 | |
2077 | ||
2078 | =item relName | |
2079 | ||
2080 | Name of the relationship whose records are to be deleted. | |
2081 | ||
2082 | =item filter | |
2083 | ||
2084 | A filter clause (L</Get>-style) for the delete query. | |
2085 | ||
2086 | =item parms | |
2087 | ||
2088 | Reference to a list of parameters for the filter clause. | |
2089 | ||
2090 | =item RETURN | |
2091 | ||
2092 | Returns a count of the number of rows deleted. | |
2093 | ||
2094 | =back | |
2095 | ||
2096 | =cut | |
2097 | ||
2098 | sub DeleteLike { | |
2099 | # Get the parameters. | |
2100 | my ($self, $objectName, $filter, $parms) = @_; | |
2101 | # Declare the return variable. | |
2102 | my $retVal; | |
2103 | # Insure the parms argument is an array reference if the caller left it off. | |
2104 | if (! defined($parms)) { | |
2105 | $parms = []; | |
2106 | } | |
2107 | # Insure we have a relationship. The main reason for this is if we delete an entity | |
2108 | # instance we have to yank out a bunch of other stuff with it. | |
2109 | if ($self->IsEntity($objectName)) { | |
2110 | Confess("Cannot use DeleteLike on $objectName, because it is not a relationship."); | |
2111 | } else { | |
2112 | # Create the SQL command suffix to get the desierd records. | |
2113 | my ($suffix) = $self->_SetupSQL([$objectName], $filter); | |
2114 | # Convert it to a DELETE command. | |
2115 | my $command = "DELETE $suffix"; | |
2116 | # Execute the command. | |
2117 | my $dbh = $self->{_dbh}; | |
2118 | my $result = $dbh->SQL($command, 0, @{$parms}); | |
2119 | # Check the results. Note we convert the "0D0" result to a real zero. | |
2120 | # A failure causes an abnormal termination, so the caller isn't going to | |
2121 | # worry about it. | |
2122 | if (! defined $result) { | |
2123 | Confess("Error deleting from $objectName: " . $dbh->errstr()); | |
2124 | } elsif ($result == 0) { | |
2125 | $retVal = 0; | |
2126 | } else { | |
2127 | $retVal = $result; | |
2128 | } | |
2129 | } | |
2130 | # Return the result count. | |
2131 | return $retVal; | |
2132 | } | |
2133 | ||
2134 | =head3 SortNeeded | |
2135 | ||
2136 | C<< my $parms = $erdb->SortNeeded($relationName); >> | |
2137 | ||
2138 | Return the pipe command for the sort that should be applied to the specified | |
2139 | relation when creating the load file. | |
2140 | ||
2141 | For example, if the load file should be sorted ascending by the first | |
2142 | field, this method would return | |
2143 | ||
2144 | sort -k1 -t"\t" | |
2145 | ||
2146 | If the first field is numeric, the method would return | |
2147 | ||
2148 | sort -k1n -t"\t" | |
2149 | ||
2150 | Unfortunately, due to a bug in the C<sort> command, we cannot eliminate duplicate | |
2151 | keys using a sort. | |
2152 | ||
2153 | =over 4 | |
2154 | ||
2155 | =item relationName | |
2156 | ||
2157 | Name of the relation to be examined. | |
2158 | ||
2159 | =item | |
2160 | ||
2161 | Returns the sort command to use for sorting the relation, suitable for piping. | |
2162 | ||
2163 | =back | |
2164 | ||
2165 | =cut | |
2166 | #: Return Type $; | |
2167 | sub SortNeeded { | |
2168 | # Get the parameters. | |
2169 | my ($self, $relationName) = @_; | |
2170 | # Declare a descriptor to hold the names of the key fields. | |
2171 | my @keyNames = (); | |
2172 | # Get the relation structure. | |
2173 | my $relationData = $self->_FindRelation($relationName); | |
2174 | # Find out if the relation is a primary entity relation, | |
2175 | # a relationship relation, or a secondary entity relation. | |
2176 | my $entityTable = $self->{_metaData}->{Entities}; | |
2177 | my $relationshipTable = $self->{_metaData}->{Relationships}; | |
2178 | if (exists $entityTable->{$relationName}) { | |
2179 | # Here we have a primary entity relation. | |
2180 | push @keyNames, "id"; | |
2181 | } elsif (exists $relationshipTable->{$relationName}) { | |
2182 | # Here we have a relationship. We sort using the FROM index. | |
2183 | my $relationshipData = $relationshipTable->{$relationName}; | |
2184 | my $index = $relationData->{Indexes}->{idxFrom}; | |
2185 | push @keyNames, @{$index->{IndexFields}}; | |
2186 | } else { | |
2187 | # Here we have a secondary entity relation, so we have a sort on the ID field. | |
2188 | push @keyNames, "id"; | |
2189 | } | |
2190 | # Now we parse the key names into sort parameters. First, we prime the return | |
2191 | # string. | |
2192 | my $retVal = "sort -t\"\t\" "; | |
2193 | # Get the relation's field list. | |
2194 | my @fields = @{$relationData->{Fields}}; | |
2195 | # Loop through the keys. | |
2196 | for my $keyData (@keyNames) { | |
2197 | # Get the key and the ordering. | |
2198 | my ($keyName, $ordering); | |
2199 | if ($keyData =~ /^([^ ]+) DESC/) { | |
2200 | ($keyName, $ordering) = ($1, "descending"); | |
2201 | } else { | |
2202 | ($keyName, $ordering) = ($keyData, "ascending"); | |
2203 | } | |
2204 | # Find the key's position and type. | |
2205 | my $fieldSpec; | |
2206 | for (my $i = 0; $i <= $#fields && ! $fieldSpec; $i++) { | |
2207 | my $thisField = $fields[$i]; | |
2208 | if ($thisField->{name} eq $keyName) { | |
2209 | # Get the sort modifier for this field type. The modifier | |
2210 | # decides whether we're using a character, numeric, or | |
2211 | # floating-point sort. | |
2212 | my $modifier = $TypeTable{$thisField->{type}}->{sort}; | |
2213 | # If the index is descending for this field, denote we want | |
2214 | # to reverse the sort order on this field. | |
2215 | if ($ordering eq 'descending') { | |
2216 | $modifier .= "r"; | |
2217 | } | |
2218 | # Store the position and modifier into the field spec, which | |
2219 | # will stop the inner loop. Note that the field number is | |
2220 | # 1-based in the sort command, so we have to increment the | |
2221 | # index. | |
2222 | $fieldSpec = ($i + 1) . $modifier; | |
2223 | } | |
2224 | } | |
2225 | # Add this field to the sort command. | |
2226 | $retVal .= " -k$fieldSpec"; | |
2227 | } | |
2228 | # Return the result. | |
2229 | return $retVal; | |
2230 | } | |
2231 | ||
2232 | =head3 GetList | =head3 GetList |
2233 | ||
2234 | C<< my @dbObjects = $erdb->GetList(\@objectNames, $filterClause, $param1, $param2, ..., $paramN); >> | C<< my @dbObjects = $erdb->GetList(\@objectNames, $filterClause, \@params); >> |
2235 | ||
2236 | Return a list of object descriptors for the specified objects as determined by the | Return a list of object descriptors for the specified objects as determined by the |
2237 | specified filter clause. | specified filter clause. |
# | Line 1255 | Line 2265 |
2265 | filter clause in general; however, odd things may happen if a sort field is from a secondary | filter clause in general; however, odd things may happen if a sort field is from a secondary |
2266 | relation. | relation. |
2267 | ||
2268 | =item param1, param2, ..., paramN | =item params |
2269 | ||
2270 | Parameter values to be substituted into the filter clause. | Reference to a list of parameter values to be substituted into the filter clause. |
2271 | ||
2272 | =item RETURN | =item RETURN |
2273 | ||
2274 | Returns a list of B<DBObject>s that satisfy the query conditions. | Returns a list of B<ERDBObject>s that satisfy the query conditions. |
2275 | ||
2276 | =back | =back |
2277 | ||
# | Line 1269 | Line 2279 |
2279 | #: Return Type @% | #: Return Type @% |
2280 | sub GetList { | sub GetList { |
2281 | # Get the parameters. | # Get the parameters. |
2282 | my ($self, $objectNames, $filterClause, @params) = @_; | my ($self, $objectNames, $filterClause, $params) = @_; |
2283 | # Declare the return variable. | # Declare the return variable. |
2284 | my @retVal = (); | my @retVal = (); |
2285 | # Perform the query. | # Perform the query. |
2286 | my $query = $self->Get($objectNames, $filterClause, @params); | my $query = $self->Get($objectNames, $filterClause, $params); |
2287 | # Loop through the results. | # Loop through the results. |
2288 | while (my $object = $query->Fetch) { | while (my $object = $query->Fetch) { |
2289 | push @retVal, $object; | push @retVal, $object; |
# | Line 1282 | Line 2292 |
2292 | return @retVal; | return @retVal; |
2293 | } | } |
2294 | ||
2295 | =head3 ComputeObjectSentence | =head3 GetCount |
2296 | ||
2297 | C<< my $sentence = $erdb->ComputeObjectSentence($objectName); >> | C<< my $count = $erdb->GetCount(\@objectNames, $filter, \@params); >> |
2298 | ||
2299 | Check an object name, and if it is a relationship convert it to a relationship sentence. | Return the number of rows found by a specified query. This method would |
2300 | normally be used to count the records in a single table. For example, in a | |
2301 | genetics database | |
2302 | ||
2303 | my $count = $erdb->GetCount(['Genome'], 'Genome(genus-species) LIKE ?', ['homo %']); | |
2304 | ||
2305 | would return the number of genomes for the genus I<homo>. It is conceivable, however, | |
2306 | to use it to return records based on a join. For example, | |
2307 | ||
2308 | my $count = $erdb->GetCount(['HasFeature', 'Genome'], 'Genome(genus-species) LIKE ?', | |
2309 | ['homo %']); | |
2310 | ||
2311 | would return the number of features for genomes in the genus I<homo>. Note that | |
2312 | only the rows from the first table are counted. If the above command were | |
2313 | ||
2314 | my $count = $erdb->GetCount(['Genome', 'Feature'], 'Genome(genus-species) LIKE ?', | |
2315 | ['homo %']); | |
2316 | ||
2317 | it would return the number of genomes, not the number of genome/feature pairs. | |
2318 | ||
2319 | =over 4 | =over 4 |
2320 | ||
2321 | =item objectName | =item objectNames |
2322 | ||
2323 | Name of the entity or relationship. | Reference to a list of the objects (entities and relationships) included in the |
2324 | query. | |
2325 | ||
2326 | =item filter | |
2327 | ||
2328 | A filter clause for restricting the query. The rules are the same as for the L</Get> | |
2329 | method. | |
2330 | ||
2331 | =item params | |
2332 | ||
2333 | Reference to a list of the parameter values to be substituted for the parameter marks | |
2334 | in the filter. | |
2335 | ||
2336 | =item RETURN | =item RETURN |
2337 | ||
2338 | Returns a string containing the entity name or a relationship sentence. | Returns a count of the number of records in the first table that would satisfy |
2339 | the query. | |
2340 | ||
2341 | =back | =back |
2342 | ||
2343 | =cut | =cut |
2344 | ||
2345 | sub ComputeObjectSentence { | sub GetCount { |
2346 | # Get the parameters. | # Get the parameters. |
2347 | my ($self, $objectName) = @_; | my ($self, $objectNames, $filter, $params) = @_; |
2348 | # Set the default return value. | # Insure the params argument is an array reference if the caller left it off. |
2349 | my $retVal = $objectName; | if (! defined($params)) { |
2350 | $params = []; | |
2351 | } | |
2352 | # Declare the return variable. | |
2353 | my $retVal; | |
2354 | # Find out if we're counting an entity or a relationship. | |
2355 | my $countedField; | |
2356 | if ($self->IsEntity($objectNames->[0])) { | |
2357 | $countedField = "id"; | |
2358 | } else { | |
2359 | # For a relationship we count the to-link because it's usually more | |
2360 | # numerous. Note we're automatically converting to the SQL form | |
2361 | # of the field name (to_link vs. to-link). | |
2362 | $countedField = "to_link"; | |
2363 | } | |
2364 | # Create the SQL command suffix to get the desired records. | |
2365 | my ($suffix, $mappedNameListRef, $mappedNameHashRef) = $self->_SetupSQL($objectNames, | |
2366 | $filter); | |
2367 | # Prefix it with text telling it we want a record count. | |
2368 | my $firstObject = $mappedNameListRef->[0]; | |
2369 | my $command = "SELECT COUNT($firstObject.$countedField) $suffix"; | |
2370 | # Prepare and execute the command. | |
2371 | my $sth = $self->_GetStatementHandle($command, $params); | |
2372 | # Get the count value. | |
2373 | ($retVal) = $sth->fetchrow_array(); | |
2374 | # Check for a problem. | |
2375 | if (! defined($retVal)) { | |
2376 | if ($sth->err) { | |
2377 | # Here we had an SQL error. | |
2378 | Confess("Error retrieving row count: " . $sth->errstr()); | |
2379 | } else { | |
2380 | # Here we have no result. | |
2381 | Confess("No result attempting to retrieve row count."); | |
2382 | } | |
2383 | } | |
2384 | # Return the result. | |
2385 | return $retVal; | |
2386 | } | |
2387 | ||
2388 | =head3 ComputeObjectSentence | |
2389 | ||
2390 | C<< my $sentence = $erdb->ComputeObjectSentence($objectName); >> | |
2391 | ||
2392 | Check an object name, and if it is a relationship convert it to a relationship sentence. | |
2393 | ||
2394 | =over 4 | |
2395 | ||
2396 | =item objectName | |
2397 | ||
2398 | Name of the entity or relationship. | |
2399 | ||
2400 | =item RETURN | |
2401 | ||
2402 | Returns a string containing the entity name or a relationship sentence. | |
2403 | ||
2404 | =back | |
2405 | ||
2406 | =cut | |
2407 | ||
2408 | sub ComputeObjectSentence { | |
2409 | # Get the parameters. | |
2410 | my ($self, $objectName) = @_; | |
2411 | # Set the default return value. | |
2412 | my $retVal = $objectName; | |
2413 | # Look for the object as a relationship. | # Look for the object as a relationship. |
2414 | my $relTable = $self->{_metaData}->{Relationships}; | my $relTable = $self->{_metaData}->{Relationships}; |
2415 | if (exists $relTable->{$objectName}) { | if (exists $relTable->{$objectName}) { |
# | Line 1359 | Line 2462 |
2462 | } | } |
2463 | } | } |
2464 | ||
2465 | =head3 InsertValue | |
2466 | ||
2467 | C<< $erdb->InsertValue($entityID, $fieldName, $value); >> | |
2468 | ||
2469 | This method will insert a new value into the database. The value must be one | |
2470 | associated with a secondary relation, since primary values cannot be inserted: | |
2471 | they occur exactly once. Secondary values, on the other hand, can be missing | |
2472 | or multiply-occurring. | |
2473 | ||
2474 | =over 4 | |
2475 | ||
2476 | =item entityID | |
2477 | ||
2478 | ID of the object that is to receive the new value. | |
2479 | ||
2480 | =item fieldName | |
2481 | ||
2482 | Field name for the new value-- this includes the entity name, since | |
2483 | field names are of the format I<objectName>C<(>I<fieldName>C<)>. | |
2484 | ||
2485 | =item value | |
2486 | ||
2487 | New value to be put in the field. | |
2488 | ||
2489 | =back | |
2490 | ||
2491 | =cut | |
2492 | ||
2493 | sub InsertValue { | |
2494 | # Get the parameters. | |
2495 | my ($self, $entityID, $fieldName, $value) = @_; | |
2496 | # Parse the entity name and the real field name. | |
2497 | if ($fieldName =~ /^([^(]+)\(([^)]+)\)/) { | |
2498 | my $entityName = $1; | |
2499 | my $fieldTitle = $2; | |
2500 | # Get its descriptor. | |
2501 | if (!$self->IsEntity($entityName)) { | |
2502 | Confess("$entityName is not a valid entity."); | |
2503 | } else { | |
2504 | my $entityData = $self->{_metaData}->{Entities}->{$entityName}; | |
2505 | # Find the relation containing this field. | |
2506 | my $fieldHash = $entityData->{Fields}; | |
2507 | if (! exists $fieldHash->{$fieldTitle}) { | |
2508 | Confess("$fieldTitle not found in $entityName."); | |
2509 | } else { | |
2510 | my $relation = $fieldHash->{$fieldTitle}->{relation}; | |
2511 | if ($relation eq $entityName) { | |
2512 | Confess("Cannot do InsertValue on primary field $fieldTitle of $entityName."); | |
2513 | } else { | |
2514 | # Now we can create an INSERT statement. | |
2515 | my $dbh = $self->{_dbh}; | |
2516 | my $fixedName = _FixName($fieldTitle); | |
2517 | my $statement = "INSERT INTO $relation (id, $fixedName) VALUES(?, ?)"; | |
2518 | # Execute the command. | |
2519 | $dbh->SQL($statement, 0, $entityID, $value); | |
2520 | } | |
2521 | } | |
2522 | } | |
2523 | } else { | |
2524 | Confess("$fieldName is not a valid field name."); | |
2525 | } | |
2526 | } | |
2527 | ||
2528 | =head3 InsertObject | =head3 InsertObject |
2529 | ||
2530 | C<< my $ok = $erdb->InsertObject($objectType, \%fieldHash); >> | C<< $erdb->InsertObject($objectType, \%fieldHash); >> |
2531 | ||
2532 | Insert an object into the database. The object is defined by a type name and then a hash | Insert an object into the database. The object is defined by a type name and then a hash |
2533 | of field names to values. Field values in the primary relation are represented by scalars. | of field names to values. Field values in the primary relation are represented by scalars. |
# | Line 1375 | Line 2541 |
2541 | The next statement inserts a C<HasProperty> relationship between feature C<fig|158879.1.peg.1> and | The next statement inserts a C<HasProperty> relationship between feature C<fig|158879.1.peg.1> and |
2542 | property C<4> with an evidence URL of C<http://seedu.uchicago.edu/query.cgi?article_id=142>. | property C<4> with an evidence URL of C<http://seedu.uchicago.edu/query.cgi?article_id=142>. |
2543 | ||
2544 | C<< $erdb->InsertObject('HasProperty', { 'from-link' => 'fig|158879.1.peg.1', 'to-link' => 4, evidence = 'http://seedu.uchicago.edu/query.cgi?article_id=142'}); >> | C<< $erdb->InsertObject('HasProperty', { 'from-link' => 'fig|158879.1.peg.1', 'to-link' => 4, evidence => 'http://seedu.uchicago.edu/query.cgi?article_id=142'}); >> |
2545 | ||
2546 | =over 4 | =over 4 |
2547 | ||
# | Line 1387 | Line 2553 |
2553 | ||
2554 | Hash of field names to values. | Hash of field names to values. |
2555 | ||
=item RETURN | ||
Returns 1 if successful, 0 if an error occurred. | ||
2556 | =back | =back |
2557 | ||
2558 | =cut | =cut |
# | Line 1489 | Line 2651 |
2651 | $retVal = $sth->execute(@parameterList); | $retVal = $sth->execute(@parameterList); |
2652 | if (!$retVal) { | if (!$retVal) { |
2653 | my $errorString = $sth->errstr(); | my $errorString = $sth->errstr(); |
2654 | Trace("Insert error: $errorString.") if T(0); | Confess("Error inserting into $relationName: $errorString"); |
2655 | } else { | |
2656 | Trace("Insert successful using $parameterList[0].") if T(3); | |
2657 | } | } |
2658 | } | } |
2659 | } | } |
2660 | } | } |
2661 | # Return the success indicator. | # Return a 1 for backward compatability. |
2662 | return $retVal; | return 1; |
2663 | } | |
2664 | ||
2665 | =head3 UpdateEntity | |
2666 | ||
2667 | C<< $erdb->UpdateEntity($entityName, $id, \%fields); >> | |
2668 | ||
2669 | Update the values of an entity. This is an unprotected update, so it should only be | |
2670 | done if the database resides on a database server. | |
2671 | ||
2672 | =over 4 | |
2673 | ||
2674 | =item entityName | |
2675 | ||
2676 | Name of the entity to update. (This is the entity type.) | |
2677 | ||
2678 | =item id | |
2679 | ||
2680 | ID of the entity to update. If no entity exists with this ID, an error will be thrown. | |
2681 | ||
2682 | =item fields | |
2683 | ||
2684 | Reference to a hash mapping field names to their new values. All of the fields named | |
2685 | must be in the entity's primary relation, and they cannot any of them be the ID field. | |
2686 | ||
2687 | =back | |
2688 | ||
2689 | =cut | |
2690 | ||
2691 | sub UpdateEntity { | |
2692 | # Get the parameters. | |
2693 | my ($self, $entityName, $id, $fields) = @_; | |
2694 | # Get a list of the field names being updated. | |
2695 | my @fieldList = keys %{$fields}; | |
2696 | # Verify that the fields exist. | |
2697 | my $checker = $self->GetFieldTable($entityName); | |
2698 | for my $field (@fieldList) { | |
2699 | if ($field eq 'id') { | |
2700 | Confess("Cannot update the ID field for entity $entityName."); | |
2701 | } elsif ($checker->{$field}->{relation} ne $entityName) { | |
2702 | Confess("Cannot find $field in primary relation of $entityName."); | |
2703 | } | |
2704 | } | |
2705 | # Build the SQL statement. | |
2706 | my @sets = (); | |
2707 | my @valueList = (); | |
2708 | for my $field (@fieldList) { | |
2709 | push @sets, _FixName($field) . " = ?"; | |
2710 | push @valueList, $fields->{$field}; | |
2711 | } | |
2712 | my $command = "UPDATE $entityName SET " . join(", ", @sets) . " WHERE id = ?"; | |
2713 | # Add the ID to the list of binding values. | |
2714 | push @valueList, $id; | |
2715 | # Call SQL to do the work. | |
2716 | my $rows = $self->{_dbh}->SQL($command, 0, @valueList); | |
2717 | # Check for errors. | |
2718 | if ($rows == 0) { | |
2719 | Confess("Entity $id of type $entityName not found."); | |
2720 | } | |
2721 | } | } |
2722 | ||
2723 | =head3 LoadTable | =head3 LoadTable |
2724 | ||
2725 | C<< my %results = $erdb->LoadTable($fileName, $relationName, $truncateFlag); >> | C<< my $results = $erdb->LoadTable($fileName, $relationName, $truncateFlag); >> |
2726 | ||
2727 | Load data from a tab-delimited file into a specified table, optionally re-creating the table | Load data from a tab-delimited file into a specified table, optionally re-creating the table |
2728 | first. | first. |
# | Line 1547 | Line 2769 |
2769 | # leave extra room. We postulate a minimum row count of 1000 to | # leave extra room. We postulate a minimum row count of 1000 to |
2770 | # prevent problems with incoming empty load files. | # prevent problems with incoming empty load files. |
2771 | my $rowSize = $self->EstimateRowSize($relationName); | my $rowSize = $self->EstimateRowSize($relationName); |
2772 | my $estimate = FIG::max($fileSize * 1.5 / $rowSize, 1000); | my $estimate = $fileSize * 1.5 / $rowSize; |
2773 | if ($estimate < 1000) { | |
2774 | $estimate = 1000; | |
2775 | } | |
2776 | # Re-create the table without its index. | # Re-create the table without its index. |
2777 | $self->CreateTable($relationName, 0, $estimate); | $self->CreateTable($relationName, 0, $estimate); |
2778 | # If this is a pre-index DBMS, create the index here. | # If this is a pre-index DBMS, create the index here. |
# | Line 1567 | Line 2792 |
2792 | }; | }; |
2793 | if (!defined $rv) { | if (!defined $rv) { |
2794 | $retVal->AddMessage($@) if ($@); | $retVal->AddMessage($@) if ($@); |
2795 | $retVal->AddMessage("Table load failed for $relationName using $fileName."); | $retVal->AddMessage("Table load failed for $relationName using $fileName: " . $dbh->error_message); |
2796 | Trace("Table load failed for $relationName.") if T(1); | Trace("Table load failed for $relationName.") if T(1); |
2797 | } else { | } else { |
2798 | # Here we successfully loaded the table. | # Here we successfully loaded the table. |
# | Line 1575 | Line 2800 |
2800 | my $size = -s $fileName; | my $size = -s $fileName; |
2801 | Trace("$size bytes loaded into $relationName.") if T(2); | Trace("$size bytes loaded into $relationName.") if T(2); |
2802 | # If we're rebuilding, we need to create the table indexes. | # If we're rebuilding, we need to create the table indexes. |
2803 | if ($truncateFlag && ! $dbh->{_preIndex}) { | if ($truncateFlag) { |
2804 | # Indexes are created here for PostGres. For PostGres, indexes are | |
2805 | # best built at the end. For MySQL, the reverse is true. | |
2806 | if (! $dbh->{_preIndex}) { | |
2807 | eval { | eval { |
2808 | $self->CreateIndex($relationName); | $self->CreateIndex($relationName); |
2809 | }; | }; |
# | Line 1583 | Line 2811 |
2811 | $retVal->AddMessage($@); | $retVal->AddMessage($@); |
2812 | } | } |
2813 | } | } |
2814 | # The full-text index (if any) is always built last, even for MySQL. | |
2815 | # First we need to see if this table has a full-text index. Only | |
2816 | # primary relations are allowed that privilege. | |
2817 | Trace("Checking for full-text index on $relationName.") if T(2); | |
2818 | if ($self->_IsPrimary($relationName)) { | |
2819 | $self->CreateSearchIndex($relationName); | |
2820 | } | |
2821 | } | |
2822 | } | } |
2823 | # Analyze the table to improve performance. | # Analyze the table to improve performance. |
2824 | Trace("Analyzing and compacting $relationName.") if T(3); | |
2825 | $dbh->vacuum_it($relationName); | $dbh->vacuum_it($relationName); |
2826 | Trace("$relationName load completed.") if T(3); | |
2827 | # Return the statistics. | # Return the statistics. |
2828 | return $retVal; | return $retVal; |
2829 | } | } |
2830 | ||
2831 | =head3 GenerateEntity | =head3 CreateSearchIndex |
2832 | ||
2833 | C<< my $fieldHash = $erdb->GenerateEntity($id, $type, \%values); >> | C<< $erdb->CreateSearchIndex($objectName); >> |
2834 | ||
2835 | Generate the data for a new entity instance. This method creates a field hash suitable for | Check for a full-text search index on the specified entity or relationship object, and |
2836 | passing as a parameter to L</InsertObject>. The ID is specified by the callr, but the rest | if one is required, rebuild it. |
of the fields are generated using information in the database schema. | ||
Each data type has a default algorithm for generating random test data. This can be overridden | ||
by including a B<DataGen> element in the field. If this happens, the content of the element is | ||
executed as a PERL program in the context of this module. The element may make use of a C<$this> | ||
variable which contains the field hash as it has been built up to the current point. If any | ||
fields are dependent on other fields, the C<pass> attribute can be used to control the order | ||
in which the fields are generated. A field with a high data pass number will be generated after | ||
a field with a lower one. If any external values are needed, they should be passed in via the | ||
optional third parameter, which will be available to the data generation script under the name | ||
C<$value>. Several useful utility methods are provided for generating random values, including | ||
L</IntGen>, L</StringGen>, L</FloatGen>, and L</DateGen>. Note that dates are stored and generated | ||
in the form of a timestamp number rather than a string. | ||
2837 | ||
2838 | =over 4 | =over 4 |
2839 | ||
2840 | =item id | =item objectName |
2841 | ||
2842 | ID to assign to the new entity. | Name of the entity or relationship to be indexed. |
2843 | ||
2844 | =item type | =back |
2845 | ||
2846 | Type name for the new entity. | =cut |
2847 | ||
2848 | =item values | sub CreateSearchIndex { |
2849 | # Get the parameters. | |
2850 | my ($self, $objectName) = @_; | |
2851 | # Get the relation's entity/relationship structure. | |
2852 | my $structure = $self->_GetStructure($objectName); | |
2853 | # Get the database handle. | |
2854 | my $dbh = $self->{_dbh}; | |
2855 | Trace("Checking for search fields in $objectName.") if T(3); | |
2856 | # Check for a searchable fields list. | |
2857 | if (exists $structure->{searchFields}) { | |
2858 | # Here we know that we need to create a full-text search index. | |
2859 | # Get an SQL-formatted field name list. | |
2860 | my $fields = join(", ", _FixNames(@{$structure->{searchFields}})); | |
2861 | # Create the index. If it already exists, it will be dropped. | |
2862 | $dbh->create_index(tbl => $objectName, idx => "search_idx", | |
2863 | flds => $fields, kind => 'fulltext'); | |
2864 | Trace("Index created for $fields in $objectName.") if T(2); | |
2865 | } | |
2866 | } | |
2867 | ||
2868 | =head3 DropRelation | |
2869 | ||
2870 | C<< $erdb->DropRelation($relationName); >> | |
2871 | ||
2872 | Hash containing additional values that might be needed by the data generation methods (optional). | Physically drop a relation from the database. |
2873 | ||
2874 | =over 4 | |
2875 | ||
2876 | =item relationName | |
2877 | ||
2878 | Name of the relation to drop. If it does not exist, this method will have | |
2879 | no effect. | |
2880 | ||
2881 | =back | =back |
2882 | ||
2883 | =cut | =cut |
2884 | ||
2885 | sub GenerateEntity { | sub DropRelation { |
2886 | # Get the parameters. | # Get the parameters. |
2887 | my ($self, $id, $type, $values) = @_; | my ($self, $relationName) = @_; |
2888 | # Create the return hash. | # Get the database handle. |
2889 | my $this = { id => $id }; | my $dbh = $self->{_dbh}; |
2890 | # Get the metadata structure. | # Drop the relation. The method used here has no effect if the relation |
2891 | my $metadata = $self->{_metaData}; | # does not exist. |
2892 | # Get this entity's list of fields. | Trace("Invoking DB Kernel to drop $relationName.") if T(3); |
2893 | if (!exists $metadata->{Entities}->{$type}) { | $dbh->drop_table(tbl => $relationName); |
2894 | Confess("Unrecognized entity type $type in GenerateEntity."); | } |
2895 | } else { | |
2896 | my $entity = $metadata->{Entities}->{$type}; | =head3 MatchSqlPattern |
2897 | my $fields = $entity->{Fields}; | |
2898 | # Generate data from the fields. | C<< my $matched = ERDB::MatchSqlPattern($value, $pattern); >> |
2899 | _GenerateFields($this, $fields, $type, $values); | |
2900 | Determine whether or not a specified value matches an SQL pattern. An SQL | |
2901 | pattern has two wild card characters: C<%> that matches multiple characters, | |
2902 | and C<_> that matches a single character. These can be escaped using a | |
2903 | backslash (C<\>). We pull this off by converting the SQL pattern to a | |
2904 | PERL regular expression. As per SQL rules, the match is case-insensitive. | |
2905 | ||
2906 | =over 4 | |
2907 | ||
2908 | =item value | |
2909 | ||
2910 | Value to be matched against the pattern. Note that an undefined or empty | |
2911 | value will not match anything. | |
2912 | ||
2913 | =item pattern | |
2914 | ||
2915 | SQL pattern against which to match the value. An undefined or empty pattern will | |
2916 | match everything. | |
2917 | ||
2918 | =item RETURN | |
2919 | ||
2920 | Returns TRUE if the value and pattern match, else FALSE. | |
2921 | ||
2922 | =back | |
2923 | ||
2924 | =cut | |
2925 | ||
2926 | sub MatchSqlPattern { | |
2927 | # Get the parameters. | |
2928 | my ($value, $pattern) = @_; | |
2929 | # Declare the return variable. | |
2930 | my $retVal; | |
2931 | # Insure we have a pattern. | |
2932 | if (! defined($pattern) || $pattern eq "") { | |
2933 | $retVal = 1; | |
2934 | } else { | |
2935 | # Break the pattern into pieces around the wildcard characters. Because we | |
2936 | # use parentheses in the split function's delimiter expression, we'll get | |
2937 | # list elements for the delimiters as well as the rest of the string. | |
2938 | my @pieces = split /([_%]|\\[_%])/, $pattern; | |
2939 | # Check some fast special cases. | |
2940 | if ($pattern eq '%') { | |
2941 | # A null pattern matches everything. | |
2942 | $retVal = 1; | |
2943 | } elsif (@pieces == 1) { | |
2944 | # No wildcards, so we have a literal comparison. Note we're case-insensitive. | |
2945 | $retVal = (lc($value) eq lc($pattern)); | |
2946 | } elsif (@pieces == 2 && $pieces[1] eq '%') { | |
2947 | # A wildcard at the end, so we have a substring match. This is also case-insensitive. | |
2948 | $retVal = (lc(substr($value, 0, length($pieces[0]))) eq lc($pieces[0])); | |
2949 | } else { | |
2950 | # Okay, we have to do it the hard way. Convert each piece to a PERL pattern. | |
2951 | my $realPattern = ""; | |
2952 | for my $piece (@pieces) { | |
2953 | # Determine the type of piece. | |
2954 | if ($piece eq "") { | |
2955 | # Empty pieces are ignored. | |
2956 | } elsif ($piece eq "%") { | |
2957 | # Here we have a multi-character wildcard. Note that it can match | |
2958 | # zero or more characters. | |
2959 | $realPattern .= ".*" | |
2960 | } elsif ($piece eq "_") { | |
2961 | # Here we have a single-character wildcard. | |
2962 | $realPattern .= "."; | |
2963 | } elsif ($piece eq "\\%" || $piece eq "\\_") { | |
2964 | # This is an escape sequence (which is a rare thing, actually). | |
2965 | $realPattern .= substr($piece, 1, 1); | |
2966 | } else { | |
2967 | # Here we have raw text. | |
2968 | $realPattern .= quotemeta($piece); | |
2969 | } | } |
2970 | # Return the hash created. | } |
2971 | return $this; | # Do the match. |
2972 | $retVal = ($value =~ /^$realPattern$/i ? 1 : 0); | |
2973 | } | |
2974 | } | |
2975 | # Return the result. | |
2976 | return $retVal; | |
2977 | } | } |
2978 | ||
2979 | =head3 GetEntity | =head3 GetEntity |
# | Line 1666 | Line 2994 |
2994 | ||
2995 | =item RETURN | =item RETURN |
2996 | ||
2997 | Returns a B<DBObject> representing the desired entity instance, or an undefined value if no | Returns a B<ERDBObject> representing the desired entity instance, or an undefined value if no |
2998 | instance is found with the specified key. | instance is found with the specified key. |
2999 | ||
3000 | =back | =back |
# | Line 1677 | Line 3005 |
3005 | # Get the parameters. | # Get the parameters. |
3006 | my ($self, $entityType, $ID) = @_; | my ($self, $entityType, $ID) = @_; |
3007 | # Create a query. | # Create a query. |
3008 | my $query = $self->Get([$entityType], "$entityType(id) = ?", $ID); | my $query = $self->Get([$entityType], "$entityType(id) = ?", [$ID]); |
3009 | # Get the first (and only) object. | # Get the first (and only) object. |
3010 | my $retVal = $query->Fetch(); | my $retVal = $query->Fetch(); |
3011 | # Return the result. | # Return the result. |
3012 | return $retVal; | return $retVal; |
3013 | } | } |
3014 | ||
3015 | =head3 GetChoices | |
3016 | ||
3017 | C<< my @values = $erdb->GetChoices($entityName, $fieldName); >> | |
3018 | ||
3019 | Return a list of all the values for the specified field that are represented in the | |
3020 | specified entity. | |
3021 | ||
3022 | Note that if the field is not indexed, then this will be a very slow operation. | |
3023 | ||
3024 | =over 4 | |
3025 | ||
3026 | =item entityName | |
3027 | ||
3028 | Name of an entity in the database. | |
3029 | ||
3030 | =item fieldName | |
3031 | ||
3032 | Name of a field belonging to the entity. This is a raw field name without | |
3033 | the standard parenthesized notation used in most calls. | |
3034 | ||
3035 | =item RETURN | |
3036 | ||
3037 | Returns a list of the distinct values for the specified field in the database. | |
3038 | ||
3039 | =back | |
3040 | ||
3041 | =cut | |
3042 | ||
3043 | sub GetChoices { | |
3044 | # Get the parameters. | |
3045 | my ($self, $entityName, $fieldName) = @_; | |
3046 | # Declare the return variable. | |
3047 | my @retVal; | |
3048 | # Get the entity data structure. | |
3049 | my $entityData = $self->_GetStructure($entityName); | |
3050 | # Get the field. | |
3051 | my $fieldHash = $entityData->{Fields}; | |
3052 | if (! exists $fieldHash->{$fieldName}) { | |
3053 | Confess("$fieldName not found in $entityName."); | |
3054 | } else { | |
3055 | # Get the name of the relation containing the field. | |
3056 | my $relation = $fieldHash->{$fieldName}->{relation}; | |
3057 | # Fix up the field name. | |
3058 | my $realName = _FixName($fieldName); | |
3059 | # Get the database handle. | |
3060 | my $dbh = $self->{_dbh}; | |
3061 | # Query the database. | |
3062 | my $results = $dbh->SQL("SELECT DISTINCT $realName FROM $relation"); | |
3063 | # Clean the results. They are stored as a list of lists, and we just want the one list. | |
3064 | @retVal = sort map { $_->[0] } @{$results}; | |
3065 | } | |
3066 | # Return the result. | |
3067 | return @retVal; | |
3068 | } | |
3069 | ||
3070 | =head3 GetEntityValues | =head3 GetEntityValues |
3071 | ||
3072 | C<< my @values = $erdb->GetEntityValues($entityType, $ID, \@fields); >> | C<< my @values = $erdb->GetEntityValues($entityType, $ID, \@fields); >> |
3073 | ||
3074 | Return a list of values from a specified entity instance. | Return a list of values from a specified entity instance. If the entity instance |
3075 | does not exist, an empty list is returned. | |
3076 | ||
3077 | =over 4 | =over 4 |
3078 | ||
# | Line 1743 | Line 3127 |
3127 | fields specified returns multiple values, they are flattened in with the rest. For | fields specified returns multiple values, they are flattened in with the rest. For |
3128 | example, the following call will return a list of the features in a particular | example, the following call will return a list of the features in a particular |
3129 | spreadsheet cell, and each feature will be represented by a list containing the | spreadsheet cell, and each feature will be represented by a list containing the |
3130 | feature ID followed by all of its aliases. | feature ID followed by all of its essentiality determinations. |
3131 | ||
3132 | C<< $query = $erdb->Get(['ContainsFeature', 'Feature'], "ContainsFeature(from-link) = ?", [$ssCellID], ['Feature(id)', 'Feature(alias)']); >> | C<< @query = $erdb->Get(['ContainsFeature', 'Feature'], "ContainsFeature(from-link) = ?", [$ssCellID], ['Feature(id)', 'Feature(essential)']); >> |
3133 | ||
3134 | =over 4 | =over 4 |
3135 | ||
# | Line 1766 | Line 3150 |
3150 | ||
3151 | List of the parameters to be substituted in for the parameters marks in the filter clause. | List of the parameters to be substituted in for the parameters marks in the filter clause. |
3152 | ||
3153 | =item fields | =item fields |
3154 | ||
3155 | List of the fields to be returned in each element of the list returned. | |
3156 | ||
3157 | =item count | |
3158 | ||
3159 | Maximum number of records to return. If omitted or 0, all available records will be returned. | |
3160 | ||
3161 | =item RETURN | |
3162 | ||
3163 | Returns a list of list references. Each element of the return list contains the values for the | |
3164 | fields specified in the B<fields> parameter. | |
3165 | ||
3166 | =back | |
3167 | ||
3168 | =cut | |
3169 | #: Return Type @@; | |
3170 | sub GetAll { | |
3171 | # Get the parameters. | |
3172 | my ($self, $objectNames, $filterClause, $parameterList, $fields, $count) = @_; | |
3173 | # Translate the parameters from a list reference to a list. If the parameter | |
3174 | # list is a scalar we convert it into a singleton list. | |
3175 | my @parmList = (); | |
3176 | if (ref $parameterList eq "ARRAY") { | |
3177 | Trace("GetAll parm list is an array.") if T(4); | |
3178 | @parmList = @{$parameterList}; | |
3179 | } else { | |
3180 | Trace("GetAll parm list is a scalar: $parameterList.") if T(4); | |
3181 | push @parmList, $parameterList; | |
3182 | } | |
3183 | # Insure the counter has a value. | |
3184 | if (!defined $count) { | |
3185 | $count = 0; | |
3186 | } | |
3187 | # Add the row limit to the filter clause. | |
3188 | if ($count > 0) { | |
3189 | $filterClause .= " LIMIT $count"; | |
3190 | } | |
3191 | # Create the query. | |
3192 | my $query = $self->Get($objectNames, $filterClause, \@parmList); | |
3193 | # Set up a counter of the number of records read. | |
3194 | my $fetched = 0; | |
3195 | # Loop through the records returned, extracting the fields. Note that if the | |
3196 | # counter is non-zero, we stop when the number of records read hits the count. | |
3197 | my @retVal = (); | |
3198 | while (($count == 0 || $fetched < $count) && (my $row = $query->Fetch())) { | |
3199 | my @rowData = $row->Values($fields); | |
3200 | push @retVal, \@rowData; | |
3201 | $fetched++; | |
3202 | } | |
3203 | Trace("$fetched rows returned in GetAll.") if T(SQL => 4); | |
3204 | # Return the resulting list. | |
3205 | return @retVal; | |
3206 | } | |
3207 | ||
3208 | =head3 Exists | |
3209 | ||
3210 | C<< my $found = $sprout->Exists($entityName, $entityID); >> | |
3211 | ||
3212 | Return TRUE if an entity exists, else FALSE. | |
3213 | ||
3214 | =over 4 | |
3215 | ||
3216 | =item entityName | |
3217 | ||
3218 | Name of the entity type (e.g. C<Feature>) relevant to the existence check. | |
3219 | ||
3220 | =item entityID | |
3221 | ||
3222 | ID of the entity instance whose existence is to be checked. | |
3223 | ||
3224 | =item RETURN | |
3225 | ||
3226 | Returns TRUE if the entity instance exists, else FALSE. | |
3227 | ||
3228 | =back | |
3229 | ||
3230 | =cut | |
3231 | #: Return Type $; | |
3232 | sub Exists { | |
3233 | # Get the parameters. | |
3234 | my ($self, $entityName, $entityID) = @_; | |
3235 | # Check for the entity instance. | |
3236 | Trace("Checking existence of $entityName with ID=$entityID.") if T(4); | |
3237 | my $testInstance = $self->GetEntity($entityName, $entityID); | |
3238 | # Return an existence indicator. | |
3239 | my $retVal = ($testInstance ? 1 : 0); | |
3240 | return $retVal; | |
3241 | } | |
3242 | ||
3243 | =head3 EstimateRowSize | |
3244 | ||
3245 | C<< my $rowSize = $erdb->EstimateRowSize($relName); >> | |
3246 | ||
3247 | Estimate the row size of the specified relation. The estimated row size is computed by adding | |
3248 | up the average length for each data type. | |
3249 | ||
3250 | =over 4 | |
3251 | ||
3252 | =item relName | |
3253 | ||
3254 | Name of the relation whose estimated row size is desired. | |
3255 | ||
3256 | =item RETURN | |
3257 | ||
3258 | Returns an estimate of the row size for the specified relation. | |
3259 | ||
3260 | =back | |
3261 | ||
3262 | =cut | |
3263 | #: Return Type $; | |
3264 | sub EstimateRowSize { | |
3265 | # Get the parameters. | |
3266 | my ($self, $relName) = @_; | |
3267 | # Declare the return variable. | |
3268 | my $retVal = 0; | |
3269 | # Find the relation descriptor. | |
3270 | my $relation = $self->_FindRelation($relName); | |
3271 | # Get the list of fields. | |
3272 | for my $fieldData (@{$relation->{Fields}}) { | |
3273 | # Get the field type and add its length. | |
3274 | my $fieldLen = $TypeTable{$fieldData->{type}}->{avgLen}; | |
3275 | $retVal += $fieldLen; | |
3276 | } | |
3277 | # Return the result. | |
3278 | return $retVal; | |
3279 | } | |
3280 | ||
3281 | =head3 GetFieldTable | |
3282 | ||
3283 | C<< my $fieldHash = $self->GetFieldTable($objectnName); >> | |
3284 | ||
3285 | Get the field structure for a specified entity or relationship. | |
3286 | ||
3287 | =over 4 | |
3288 | ||
3289 | =item objectName | |
3290 | ||
3291 | Name of the desired entity or relationship. | |
3292 | ||
3293 | =item RETURN | |
3294 | ||
3295 | The table containing the field descriptors for the specified object. | |
3296 | ||
3297 | =back | |
3298 | ||
3299 | =cut | |
3300 | ||
3301 | sub GetFieldTable { | |
3302 | # Get the parameters. | |
3303 | my ($self, $objectName) = @_; | |
3304 | # Get the descriptor from the metadata. | |
3305 | my $objectData = $self->_GetStructure($objectName); | |
3306 | # Return the object's field table. | |
3307 | return $objectData->{Fields}; | |
3308 | } | |
3309 | ||
3310 | =head3 SplitKeywords | |
3311 | ||
3312 | C<< my @keywords = ERDB::SplitKeywords($keywordString); >> | |
3313 | ||
3314 | This method returns a list of the positive keywords in the specified | |
3315 | keyword string. All of the operators will have been stripped off, | |
3316 | and if the keyword is preceded by a minus operator (C<->), it will | |
3317 | not be in the list returned. The idea here is to get a list of the | |
3318 | keywords the user wants to see. The list will be processed to remove | |
3319 | duplicates. | |
3320 | ||
3321 | It is possible to create a string that confuses this method. For example | |
3322 | ||
3323 | frog toad -frog | |
3324 | ||
3325 | would return both C<frog> and C<toad>. If this is a problem we can deal | |
3326 | with it later. | |
3327 | ||
3328 | =over 4 | |
3329 | ||
3330 | =item keywordString | |
3331 | ||
3332 | The keyword string to be parsed. | |
3333 | ||
3334 | =item RETURN | |
3335 | ||
3336 | Returns a list of the words in the keyword string the user wants to | |
3337 | see. | |
3338 | ||
3339 | =back | |
3340 | ||
3341 | =cut | |
3342 | ||
3343 | sub SplitKeywords { | |
3344 | # Get the parameters. | |
3345 | my ($keywordString) = @_; | |
3346 | # Make a safety copy of the string. (This helps during debugging.) | |
3347 | my $workString = $keywordString; | |
3348 | # Convert operators we don't care about to spaces. | |
3349 | $workString =~ tr/+"()<>/ /; | |
3350 | # Split the rest of the string along space boundaries. Note that we | |
3351 | # eliminate any words that are zero length or begin with a minus sign. | |
3352 | my @wordList = grep { $_ && substr($_, 0, 1) ne "-" } split /\s+/, $workString; | |
3353 | # Use a hash to remove duplicates. | |
3354 | my %words = map { $_ => 1 } @wordList; | |
3355 | # Return the result. | |
3356 | return sort keys %words; | |
3357 | } | |
3358 | ||
3359 | =head3 ValidateFieldName | |
3360 | ||
3361 | C<< my $okFlag = ERDB::ValidateFieldName($fieldName); >> | |
3362 | ||
3363 | Return TRUE if the specified field name is valid, else FALSE. Valid field names must | |
3364 | be hyphenated words subject to certain restrictions. | |
3365 | ||
3366 | =over 4 | |
3367 | ||
3368 | =item fieldName | |
3369 | ||
3370 | Field name to be validated. | |
3371 | ||
3372 | =item RETURN | |
3373 | ||
3374 | Returns TRUE if the field name is valid, else FALSE. | |
3375 | ||
3376 | =back | |
3377 | ||
3378 | =cut | |
3379 | ||
3380 | sub ValidateFieldName { | |
3381 | # Get the parameters. | |
3382 | my ($fieldName) = @_; | |
3383 | # Declare the return variable. The field name is valid until we hear | |
3384 | # differently. | |
3385 | my $retVal = 1; | |
3386 | # Compute the maximum name length. | |
3387 | my $maxLen = $TypeTable{'name-string'}->{maxLen}; | |
3388 | # Look for bad stuff in the name. | |
3389 | if ($fieldName =~ /--/) { | |
3390 | # Here we have a doubled minus sign. | |
3391 | Trace("Field name $fieldName has a doubled hyphen.") if T(1); | |
3392 | $retVal = 0; | |
3393 | } elsif ($fieldName !~ /^[A-Za-z]/) { | |
3394 | # Here the field name is missing the initial letter. | |
3395 | Trace("Field name $fieldName does not begin with a letter.") if T(1); | |
3396 | $retVal = 0; | |
3397 | } elsif (length($fieldName) > $maxLen) { | |
3398 | # Here the field name is too long. | |
3399 | Trace("Maximum field name length is $maxLen. Field name must be truncated to " . substr($fieldName,0, $maxLen) . "."); | |
3400 | } else { | |
3401 | # Strip out the minus signs. Everything remaining must be a letter, | |
3402 | # underscore, or digit. | |
3403 | my $strippedName = $fieldName; | |
3404 | $strippedName =~ s/-//g; | |
3405 | if ($strippedName !~ /^(\w|\d)+$/) { | |
3406 | Trace("Field name $fieldName contains illegal characters.") if T(1); | |
3407 | $retVal = 0; | |
3408 | } | |
3409 | } | |
3410 | # Return the result. | |
3411 | return $retVal; | |
3412 | } | |
3413 | ||
3414 | =head3 ReadMetaXML | |
3415 | ||
3416 | C<< my $rawMetaData = ERDB::ReadDBD($fileName); >> | |
3417 | ||
3418 | This method reads a raw database definition XML file and returns it. | |
3419 | Normally, the metadata used by the ERDB system has been processed and | |
3420 | modified to make it easier to load and retrieve the data; however, | |
3421 | this method can be used to get the data in its raw form. | |
3422 | ||
3423 | =over 4 | |
3424 | ||
3425 | =item fileName | |
3426 | ||
3427 | Name of the XML file to read. | |
3428 | ||
3429 | =item RETURN | |
3430 | ||
3431 | Returns a hash reference containing the raw XML data from the specified file. | |
3432 | ||
3433 | =back | |
3434 | ||
3435 | =cut | |
3436 | ||
3437 | sub ReadMetaXML { | |
3438 | # Get the parameters. | |
3439 | my ($fileName) = @_; | |
3440 | # Read the XML. | |
3441 | my $retVal = XML::Simple::XMLin($fileName, %XmlOptions, %XmlInOpts); | |
3442 | Trace("XML metadata loaded from file $fileName.") if T(1); | |
3443 | # Return the result. | |
3444 | return $retVal; | |
3445 | } | |
3446 | ||
3447 | =head3 GetEntityFieldHash | |
3448 | ||
3449 | C<< my $fieldHashRef = ERDB::GetEntityFieldHash($structure, $entityName); >> | |
3450 | ||
3451 | Get the field hash of the named entity in the specified raw XML structure. | |
3452 | The field hash may not exist, in which case we need to create it. | |
3453 | ||
3454 | =over 4 | |
3455 | ||
3456 | =item structure | |
3457 | ||
3458 | Raw XML structure defininng the database. This is not the run-time XML used by | |
3459 | an ERDB object, since that has all sorts of optimizations built-in. | |
3460 | ||
3461 | =item entityName | |
3462 | ||
3463 | Name of the entity whose field structure is desired. | |
3464 | ||
3465 | =item RETURN | |
3466 | ||
3467 | Returns the field hash used to define the entity's fields. | |
3468 | ||
3469 | =back | |
3470 | ||
3471 | =cut | |
3472 | ||
3473 | sub GetEntityFieldHash { | |
3474 | # Get the parameters. | |
3475 | my ($structure, $entityName) = @_; | |
3476 | # Get the entity structure. | |
3477 | my $entityData = $structure->{Entities}->{$entityName}; | |
3478 | # Look for a field structure. | |
3479 | my $retVal = $entityData->{Fields}; | |
3480 | # If it doesn't exist, create it. | |
3481 | if (! defined($retVal)) { | |
3482 | $entityData->{Fields} = {}; | |
3483 | $retVal = $entityData->{Fields}; | |
3484 | } | |
3485 | # Return the result. | |
3486 | return $retVal; | |
3487 | } | |
3488 | ||
3489 | =head3 WriteMetaXML | |
3490 | ||
3491 | C<< ERDB::WriteMetaXML($structure, $fileName); >> | |
3492 | ||
3493 | Write the metadata XML to a file. This method is the reverse of L</ReadMetaXML>, and is | |
3494 | used to update the database definition. It must be used with care, however, since it | |
3495 | will only work on a raw structure, not on the processed structure created by an ERDB | |
3496 | constructor. | |
3497 | ||
3498 | =over 4 | |
3499 | ||
3500 | =item structure | |
3501 | ||
3502 | XML structure to be written to the file. | |
3503 | ||
3504 | =item fileName | |
3505 | ||
3506 | Name of the output file to which the updated XML should be stored. | |
3507 | ||
3508 | =back | |
3509 | ||
3510 | =cut | |
3511 | ||
3512 | sub WriteMetaXML { | |
3513 | # Get the parameters. | |
3514 | my ($structure, $fileName) = @_; | |
3515 | # Compute the output. | |
3516 | my $fileString = XML::Simple::XMLout($structure, %XmlOptions, %XmlOutOpts); | |
3517 | # Write it to the file. | |
3518 | my $xmlOut = Open(undef, ">$fileName"); | |
3519 | print $xmlOut $fileString; | |
3520 | } | |
3521 | ||
3522 | ||
3523 | =head3 HTMLNote | |
3524 | ||
3525 | Convert a note or comment to HTML by replacing some bulletin-board codes with HTML. The codes | |
3526 | supported are C<[b]> for B<bold>, C<[i]> for I<italics>, and C<[p]> for a new paragraph. | |
3527 | Except for C<[p]>, all the codes are closed by slash-codes. So, for | |
3528 | example, C<[b]Feature[/b]> displays the string C<Feature> in boldface. | |
3529 | ||
3530 | C<< my $realHtml = ERDB::HTMLNote($dataString); >> | |
3531 | ||
3532 | =over 4 | |
3533 | ||
3534 | =item dataString | |
3535 | ||
3536 | String to convert to HTML. | |
3537 | ||
3538 | =item RETURN | |
3539 | ||
3540 | An HTML string derived from the input string. | |
3541 | ||
3542 | =back | |
3543 | ||
3544 | =cut | |
3545 | ||
3546 | sub HTMLNote { | |
3547 | # Get the parameter. | |
3548 | my ($dataString) = @_; | |
3549 | # HTML-escape the text. | |
3550 | my $retVal = CGI::escapeHTML($dataString); | |
3551 | # Substitute the bulletin board codes. | |
3552 | $retVal =~ s!\[(/?[bi])\]!<$1>!g; | |
3553 | $retVal =~ s!\[p\]!</p><p>!g; | |
3554 | $retVal =~ s!\[link\s+([^\]]+)\]!<a href="$1">!g; | |
3555 | $retVal =~ s!\[/link\]!</a>!g; | |
3556 | # Return the result. | |
3557 | return $retVal; | |
3558 | } | |
3559 | ||
3560 | =head3 BeginTran | |
3561 | ||
3562 | C<< $erdb->BeginTran(); >> | |
3563 | ||
3564 | Start a database transaction. | |
3565 | ||
3566 | =cut | |
3567 | ||
3568 | sub BeginTran { | |
3569 | my ($self) = @_; | |
3570 | $self->{_dbh}->begin_tran(); | |
3571 | ||
3572 | } | |
3573 | ||
3574 | =head3 CommitTran | |
3575 | ||
3576 | C<< $erdb->CommitTran(); >> | |
3577 | ||
3578 | Commit an active database transaction. | |
3579 | ||
3580 | =cut | |
3581 | ||
3582 | sub CommitTran { | |
3583 | my ($self) = @_; | |
3584 | $self->{_dbh}->commit_tran(); | |
3585 | } | |
3586 | ||
3587 | =head3 RollbackTran | |
3588 | ||
3589 | C<< $erdb->RollbackTran(); >> | |
3590 | ||
3591 | Roll back an active database transaction. | |
3592 | ||
3593 | =cut | |
3594 | ||
3595 | sub RollbackTran { | |
3596 | my ($self) = @_; | |
3597 | $self->{_dbh}->roll_tran(); | |
3598 | } | |
3599 | ||
3600 | =head3 UpdateField | |
3601 | ||
3602 | C<< my $count = $erdb->UpdateField($objectNames, $fieldName, $oldValue, $newValue, $filter, $parms); >> | |
3603 | ||
3604 | Update all occurrences of a specific field value to a new value. The number of rows changed will be | |
3605 | returned. | |
3606 | ||
3607 | =over 4 | |
3608 | ||
3609 | =item fieldName | |
3610 | ||
3611 | Name of the field in standard I<objectName>C<(>I<fieldName>C<)> format. | |
3612 | ||
3613 | =item oldValue | |
3614 | ||
3615 | Value to be modified. All occurrences of this value in the named field will be replaced by the | |
3616 | new value. | |
3617 | ||
3618 | =item newValue | |
3619 | ||
3620 | New value to be substituted for the old value when it's found. | |
3621 | ||
3622 | =item filter | |
3623 | ||
3624 | A standard ERDB filter clause (see L</Get>). The filter will be applied before any substitutions take place. | |
3625 | ||
3626 | =item parms | |
3627 | ||
3628 | Reference to a list of parameter values in the filter. | |
3629 | ||
3630 | =item RETURN | |
3631 | ||
3632 | Returns the number of rows modified. | |
3633 | ||
3634 | =back | |
3635 | ||
3636 | =cut | |
3637 | ||
3638 | sub UpdateField { | |
3639 | # Get the parameters. | |
3640 | my ($self, $fieldName, $oldValue, $newValue, $filter, $parms) = @_; | |
3641 | # Get the object and field names from the field name parameter. | |
3642 | $fieldName =~ /^([^(]+)\(([^)]+)\)/; | |
3643 | my $objectName = $1; | |
3644 | my $realFieldName = _FixName($2); | |
3645 | # Add the old value to the filter. Note we allow the possibility that no | |
3646 | # filter was specified. | |
3647 | my $realFilter = "$fieldName = ?"; | |
3648 | if ($filter) { | |
3649 | $realFilter .= " AND $filter"; | |
3650 | } | |
3651 | # Format the query filter. | |
3652 | my ($suffix, $mappedNameListRef, $mappedNameHashRef) = | |
3653 | $self->_SetupSQL([$objectName], $realFilter); | |
3654 | # Create the query. Since there is only one object name, the mapped-name data is not | |
3655 | # necessary. Neither is the FROM clause. | |
3656 | $suffix =~ s/^FROM.+WHERE\s+//; | |
3657 | # Create the update statement. | |
3658 | my $command = "UPDATE $objectName SET $realFieldName = ? WHERE $suffix"; | |
3659 | # Get the database handle. | |
3660 | my $dbh = $self->{_dbh}; | |
3661 | # Add the old and new values to the parameter list. Note we allow the possibility that | |
3662 | # there are no user-supplied parameters. | |
3663 | my @params = ($newValue, $oldValue); | |
3664 | if (defined $parms) { | |
3665 | push @params, @{$parms}; | |
3666 | } | |
3667 | # Execute the update. | |
3668 | my $retVal = $dbh->SQL($command, 0, @params); | |
3669 | # Make the funky zero a real zero. | |
3670 | if ($retVal == 0) { | |
3671 | $retVal = 0; | |
3672 | } | |
3673 | # Return the result. | |
3674 | return $retVal; | |
3675 | } | |
3676 | ||
3677 | ||
3678 | =head2 Data Mining Methods | |
3679 | ||
3680 | =head3 GetUsefulCrossValues | |
3681 | ||
3682 | C<< my @attrNames = $sprout->GetUsefulCrossValues($sourceEntity, $relationship); >> | |
3683 | ||
3684 | Return a list of the useful attributes that would be returned by a B<Cross> call | |
3685 | from an entity of the source entity type through the specified relationship. This | |
3686 | means it will return the fields of the target entity type and the intersection data | |
3687 | fields in the relationship. Only primary table fields are returned. In other words, | |
3688 | the field names returned will be for fields where there is always one and only one | |
3689 | value. | |
3690 | ||
3691 | =over 4 | |
3692 | ||
3693 | =item sourceEntity | |
3694 | ||
3695 | Name of the entity from which the relationship crossing will start. | |
3696 | ||
3697 | =item relationship | |
3698 | ||
3699 | Name of the relationship being crossed. | |
3700 | ||
3701 | =item RETURN | |
3702 | ||
3703 | Returns a list of field names in Sprout field format (I<objectName>C<(>I<fieldName>C<)>. | |
3704 | ||
3705 | =back | |
3706 | ||
3707 | =cut | |
3708 | #: Return Type @; | |
3709 | sub GetUsefulCrossValues { | |
3710 | # Get the parameters. | |
3711 | my ($self, $sourceEntity, $relationship) = @_; | |
3712 | # Declare the return variable. | |
3713 | my @retVal = (); | |
3714 | # Determine the target entity for the relationship. This is whichever entity is not | |
3715 | # the source entity. So, if the source entity is the FROM, we'll get the name of | |
3716 | # the TO, and vice versa. | |
3717 | my $relStructure = $self->_GetStructure($relationship); | |
3718 | my $targetEntityType = ($relStructure->{from} eq $sourceEntity ? "to" : "from"); | |
3719 | my $targetEntity = $relStructure->{$targetEntityType}; | |
3720 | # Get the field table for the entity. | |
3721 | my $entityFields = $self->GetFieldTable($targetEntity); | |
3722 | # The field table is a hash. The hash key is the field name. The hash value is a structure. | |
3723 | # For the entity fields, the key aspect of the target structure is that the {relation} value | |
3724 | # must match the entity name. | |
3725 | my @fieldList = map { "$targetEntity($_)" } grep { $entityFields->{$_}->{relation} eq $targetEntity } | |
3726 | keys %{$entityFields}; | |
3727 | # Push the fields found onto the return variable. | |
3728 | push @retVal, sort @fieldList; | |
3729 | # Get the field table for the relationship. | |
3730 | my $relationshipFields = $self->GetFieldTable($relationship); | |
3731 | # Here we have a different rule. We want all the fields other than "from-link" and "to-link". | |
3732 | # This may end up being an empty set. | |
3733 | my @fieldList2 = map { "$relationship($_)" } grep { $_ ne "from-link" && $_ ne "to-link" } | |
3734 | keys %{$relationshipFields}; | |
3735 | # Push these onto the return list. | |
3736 | push @retVal, sort @fieldList2; | |
3737 | # Return the result. | |
3738 | return @retVal; | |
3739 | } | |
3740 | ||
3741 | =head3 FindColumn | |
3742 | ||
3743 | C<< my $colIndex = ERDB::FindColumn($headerLine, $columnIdentifier); >> | |
3744 | ||
3745 | Return the location a desired column in a data mining header line. The data | |
3746 | mining header line is a tab-separated list of column names. The column | |
3747 | identifier is either the numerical index of a column or the actual column | |
3748 | name. | |
3749 | ||
3750 | =over 4 | |
3751 | ||
3752 | =item headerLine | |
3753 | ||
3754 | The header line from a data mining command, which consists of a tab-separated | |
3755 | list of column names. | |
3756 | ||
3757 | =item columnIdentifier | |
3758 | ||
3759 | Either the ordinal number of the desired column (1-based), or the name of the | |
3760 | desired column. | |
3761 | ||
3762 | =item RETURN | |
3763 | ||
3764 | Returns the array index (0-based) of the desired column. | |
3765 | ||
3766 | =back | |
3767 | ||
3768 | =cut | |
3769 | ||
3770 | sub FindColumn { | |
3771 | # Get the parameters. | |
3772 | my ($headerLine, $columnIdentifier) = @_; | |
3773 | # Declare the return variable. | |
3774 | my $retVal; | |
3775 | # Split the header line into column names. | |
3776 | my @headers = ParseColumns($headerLine); | |
3777 | # Determine whether we have a number or a name. | |
3778 | if ($columnIdentifier =~ /^\d+$/) { | |
3779 | # Here we have a number. Subtract 1 and validate the result. | |
3780 | $retVal = $columnIdentifier - 1; | |
3781 | if ($retVal < 0 || $retVal > $#headers) { | |
3782 | Confess("Invalid column identifer \"$columnIdentifier\": value out of range."); | |
3783 | } | |
3784 | } else { | |
3785 | # Here we have a name. We need to find it in the list. | |
3786 | for (my $i = 0; $i <= $#headers && ! defined($retVal); $i++) { | |
3787 | if ($headers[$i] eq $columnIdentifier) { | |
3788 | $retVal = $i; | |
3789 | } | |
3790 | } | |
3791 | if (! defined($retVal)) { | |
3792 | Confess("Invalid column identifier \"$columnIdentifier\": value not found."); | |
3793 | } | |
3794 | } | |
3795 | # Return the result. | |
3796 | return $retVal; | |
3797 | } | |
3798 | ||
3799 | =head3 ParseColumns | |
3800 | ||
3801 | C<< my @columns = ERDB::ParseColumns($line); >> | |
3802 | ||
3803 | Convert the specified data line to a list of columns. | |
3804 | ||
3805 | =over 4 | |
3806 | ||
3807 | =item line | |
3808 | ||
3809 | A data mining input, consisting of a tab-separated list of columns terminated by a | |
3810 | new-line. | |
3811 | ||
3812 | =item RETURN | |
3813 | ||
3814 | Returns a list consisting of the column values. | |
3815 | ||
3816 | =back | |
3817 | ||
3818 | =cut | |
3819 | ||
3820 | sub ParseColumns { | |
3821 | # Get the parameters. | |
3822 | my ($line) = @_; | |
3823 | # Chop off the line-end. | |
3824 | chomp $line; | |
3825 | # Split it into a list. | |
3826 | my @retVal = split(/\t/, $line); | |
3827 | # Return the result. | |
3828 | return @retVal; | |
3829 | } | |
3830 | ||
3831 | =head2 Virtual Methods | |
3832 | ||
3833 | =head3 _CreatePPOIndex | |
3834 | ||
3835 | C<< my $index = ERDB::_CreatePPOIndex($indexObject); >> | |
3836 | ||
3837 | Convert the XML for an ERDB index to the XML structure for a PPO | |
3838 | index. | |
3839 | ||
3840 | =over 4 | |
3841 | ||
3842 | ERDB XML structure for an index. | |
3843 | ||
3844 | =item RETURN | |
3845 | ||
3846 | PPO XML structure for the same index. | |
3847 | ||
3848 | =back | |
3849 | ||
3850 | =cut | |
3851 | ||
3852 | sub _CreatePPOIndex { | |
3853 | # Get the parameters. | |
3854 | my ($indexObject) = @_; | |
3855 | # The incoming index contains a list of the index fields in the IndexFields | |
3856 | # member. We loop through it to create the index tags. | |
3857 | my @fields = map { { label => _FixName($_->{name}) } } @{$indexObject->{IndexFields}}; | |
3858 | # Wrap the fields in attribute tags. | |
3859 | my $retVal = { attribute => \@fields }; | |
3860 | # Return the result. | |
3861 | return $retVal; | |
3862 | } | |
3863 | ||
3864 | =head3 _CreatePPOField | |
3865 | ||
3866 | C<< my $fieldXML = ERDB::_CreatePPOField($fieldName, $fieldObject); >> | |
3867 | ||
3868 | Convert the ERDB XML structure for a field to a PPO scalar XML structure. | |
3869 | ||
3870 | =over 4 | |
3871 | ||
3872 | =item fieldName | |
3873 | ||
3874 | List of the fields to be returned in each element of the list returned. | Name of the scalar field. |
3875 | ||
3876 | =item count | =item fieldObject |
3877 | ||
3878 | Maximum number of records to return. If omitted or 0, all available records will be returned. | ERDB XML structure describing the field. |
3879 | ||
3880 | =item RETURN | =item RETURN |
3881 | ||
3882 | Returns a list of list references. Each element of the return list contains the values for the | Returns a PPO XML structure for the same field. |
fields specified in the B<fields> parameter. | ||
3883 | ||
3884 | =back | =back |
3885 | ||
3886 | =cut | =cut |
3887 | #: Return Type @@; | |
3888 | sub GetAll { | sub _CreatePPOField { |
3889 | # Get the parameters. | # Get the parameters. |
3890 | my ($self, $objectNames, $filterClause, $parameterList, $fields, $count) = @_; | my ($fieldName, $fieldObject) = @_; |
3891 | # Translate the parameters from a list reference to a list. If the parameter | # Get the field type. |
3892 | # list is a scalar we convert it into a singleton list. | my $type = $TypeTable{$fieldObject->{type}}->{sqlType}; |
3893 | my @parmList = (); | # Fix up the field name. |
3894 | if (ref $parameterList eq "ARRAY") { | $fieldName = _FixName($fieldName); |
3895 | @parmList = @{$parameterList}; | # Build the scalar tag. |
3896 | } else { | my $retVal = { label => $fieldName, type => $type }; |
3897 | push @parmList, $parameterList; | # Return the result. |
3898 | } | return $retVal; |
# Insure the counter has a value. | ||
if (!defined $count) { | ||
$count = 0; | ||
} | ||
# Add the row limit to the filter clause. | ||
if ($count > 0) { | ||
$filterClause .= " LIMIT $count"; | ||
} | ||
# Create the query. | ||
my $query = $self->Get($objectNames, $filterClause, @parmList); | ||
# Set up a counter of the number of records read. | ||
my $fetched = 0; | ||
# Loop through the records returned, extracting the fields. Note that if the | ||
# counter is non-zero, we stop when the number of records read hits the count. | ||
my @retVal = (); | ||
while (($count == 0 || $fetched < $count) && (my $row = $query->Fetch())) { | ||
my @rowData = $row->Values($fields); | ||
push @retVal, \@rowData; | ||
$fetched++; | ||
} | ||
# Return the resulting list. | ||
return @retVal; | ||
3899 | } | } |
3900 | ||
3901 | =head3 EstimateRowSize | =head3 CleanKeywords |
3902 | ||
3903 | C<< my $rowSize = $erdb->EstimateRowSize($relName); >> | C<< my $cleanedString = $erdb->CleanKeywords($searchExpression); >> |
3904 | ||
3905 | Estimate the row size of the specified relation. The estimated row size is computed by adding | Clean up a search expression or keyword list. This is a virtual method that may |
3906 | up the average length for each data type. | be overridden by the subclass. The base-class method removes extra spaces |
3907 | and converts everything to lower case. | |
3908 | ||
3909 | =over 4 | =over 4 |
3910 | ||
3911 | =item relName | =item searchExpression |
3912 | ||
3913 | Name of the relation whose estimated row size is desired. | Search expression or keyword list to clean. Note that a search expression may |
3914 | contain boolean operators which need to be preserved. This includes leading | |
3915 | minus signs. | |
3916 | ||
3917 | =item RETURN | =item RETURN |
3918 | ||
3919 | Returns an estimate of the row size for the specified relation. | Cleaned expression or keyword list. |
3920 | ||
3921 | =back | =back |
3922 | ||
3923 | =cut | =cut |
3924 | #: Return Type $; | |
3925 | sub EstimateRowSize { | sub CleanKeywords { |
3926 | # Get the parameters. | # Get the parameters. |
3927 | my ($self, $relName) = @_; | my ($self, $searchExpression) = @_; |
3928 | # Declare the return variable. | # Lower-case the expression and copy it into the return variable. Note that we insure we |
3929 | my $retVal = 0; | # don't accidentally end up with an undefined value. |
3930 | # Find the relation descriptor. | my $retVal = lc($searchExpression || ""); |
3931 | my $relation = $self->_FindRelation($relName); | # Remove extra spaces. |
3932 | # Get the list of fields. | $retVal =~ s/\s+/ /g; |
3933 | for my $fieldData (@{$relation->{Fields}}) { | $retVal =~ s/(^\s+)|(\s+$)//g; |
# Get the field type and add its length. | ||
my $fieldLen = $TypeTable{$fieldData->{type}}->{avgLen}; | ||
$retVal += $fieldLen; | ||
} | ||
3934 | # Return the result. | # Return the result. |
3935 | return $retVal; | return $retVal; |
3936 | } | } |
3937 | ||
3938 | =head3 GetSourceObject | |
3939 | ||
3940 | C<< my $source = $erdb->GetSourceObject($entityName); >> | |
3941 | ||
3942 | Return the object to be used in loading special attributes of the specified entity. The | |
3943 | algorithm for loading special attributes is stored in the C<DataGen> elements of the | |
3944 | XML | |
3945 | ||
3946 | =head2 Internal Utility Methods | =head2 Internal Utility Methods |
3947 | ||
3948 | =head3 GetLoadStats | =head3 _RelationMap |
3949 | ||
3950 | Return a blank statistics object for use by the load methods. | C<< my @relationMap = _RelationMap($mappedNameHashRef, $mappedNameListRef); >> |
3951 | ||
3952 | This is a static method. | Create the relation map for an SQL query. The relation map is used by B<ERDBObject> |
3953 | to determine how to interpret the results of the query. | |
3954 | ||
3955 | =cut | =over 4 |
3956 | ||
3957 | sub _GetLoadStats{ | =item mappedNameHashRef |
return Stats->new(); | ||
} | ||
3958 | ||
3959 | =head3 GenerateFields | Reference to a hash that maps modified object names to real object names. |
3960 | ||
3961 | Generate field values from a field structure and store in a specified table. The field names | =item mappedNameListRef |
are first sorted by pass count, certain pre-defined fields are removed from the list, and | ||
then we rip through them evaluation the data generation string. Fields in the primary relation | ||
are stored as scalars; fields in secondary relations are stored as value lists. | ||
3962 | ||
3963 | This is a static method. | Reference to a list of modified object names in the order they appear in the |
3964 | SELECT list. | |
3965 | ||
3966 | =over 4 | =item RETURN |
3967 | ||
3968 | =item this | Returns a list of 2-tuples. Each tuple consists of an object name as used in the |
3969 | query followed by the actual name of that object. This enables the B<ERDBObject> to | |
3970 | determine the order of the tables in the query and which object name belongs to each | |
3971 | mapped object name. Most of the time these two values are the same; however, if a | |
3972 | relation occurs twice in the query, the relation name in the field list and WHERE | |
3973 | clause will use a mapped name (generally the actual relation name with a numeric | |
3974 | suffix) that does not match the actual relation name. | |
3975 | ||
3976 | Hash table into which the field values should be placed. | =back |
3977 | ||
3978 | =item fields | =cut |
3979 | ||
3980 | Field structure from which the field descriptors should be taken. | sub _RelationMap { |
3981 | # Get the parameters. | |
3982 | my ($mappedNameHashRef, $mappedNameListRef) = @_; | |
3983 | # Declare the return variable. | |
3984 | my @retVal = (); | |
3985 | # Build the map. | |
3986 | for my $mappedName (@{$mappedNameListRef}) { | |
3987 | push @retVal, [$mappedName, $mappedNameHashRef->{$mappedName}]; | |
3988 | } | |
3989 | # Return it. | |
3990 | return @retVal; | |
3991 | } | |
3992 | ||
=item type | ||
3993 | ||
3994 | Type name of the object whose fields are being generated. | =head3 _SetupSQL |
3995 | ||
3996 | Process a list of object names and a filter clause so that they can be used to | |
3997 | build an SQL statement. This method takes in a reference to a list of object names | |
3998 | and a filter clause. It will return a corrected filter clause, a list of mapped | |
3999 | names and the mapped name hash. | |
4000 | ||
4001 | This is an instance method. | |
4002 | ||
4003 | =over 4 | |
4004 | ||
4005 | =item objectNames | |
4006 | ||
4007 | Reference to a list of the object names to be included in the query. | |
4008 | ||
4009 | =item values (optional) | =item filterClause |
4010 | ||
4011 | Reference to a value structure from which additional values can be taken. | A string containing the WHERE clause for the query (without the C<WHERE>) and also |
4012 | optionally the C<ORDER BY> and C<LIMIT> clauses. | |
4013 | ||
4014 | =item from (optiona) | =item matchClause |
4015 | ||
4016 | Reference to the source entity instance if relationship data is being generated. | An optional full-text search clause. If specified, it will be inserted at the |
4017 | front of the WHERE clause. It should already be SQL-formatted; that is, the | |
4018 | field names should be in the form I<table>C<.>I<fieldName>. | |
4019 | ||
4020 | =item to (optional) | =item RETURN |
4021 | ||
4022 | Reference to the target entity instance if relationship data is being generated. | Returns a three-element list. The first element is the SQL statement suffix, beginning |
4023 | with the FROM clause. The second element is a reference to a list of the names to be | |
4024 | used in retrieving the fields. The third element is a hash mapping the names to the | |
4025 | objects they represent. | |
4026 | ||
4027 | =back | =back |
4028 | ||
4029 | =cut | =cut |
4030 | ||
4031 | sub _GenerateFields { | sub _SetupSQL { |
4032 | # Get the parameters. | my ($self, $objectNames, $filterClause, $matchClause) = @_; |
4033 | my ($this, $fields, $type, $values, $from, $to) = @_; | # Adjust the list of object names to account for multiple occurrences of the |
4034 | # Sort the field names by pass number. | # same object. We start with a hash table keyed on object name that will |
4035 | my @fieldNames = sort { $fields->{$a}->{DataGen}->{pass} <=> $fields->{$b}->{DataGen}->{pass} } keys %{$fields}; | # return the object suffix. The first time an object is encountered it will |
4036 | # Loop through the field names, generating data. | # not be found in the hash. The next time the hash will map the object name |
4037 | for my $name (@fieldNames) { | # to 2, then 3, and so forth. |
4038 | # Only proceed if this field needs to be generated. | my %objectHash = (); |
4039 | if (!exists $this->{$name}) { | # This list will contain the object names as they are to appear in the |
4040 | # Get this field's data generation descriptor. | # FROM list. |
4041 | my $fieldDescriptor = $fields->{$name}; | my @fromList = (); |
4042 | my $data = $fieldDescriptor->{DataGen}; | # This list contains the suffixed object name for each object. It is exactly |
4043 | # Get the code to generate the field value. | # parallel to the list in the $objectNames parameter. |
4044 | my $codeString = $data->{content}; | my @mappedNameList = (); |
4045 | # Determine whether or not this field is in the primary relation. | # Finally, this hash translates from a mapped name to its original object name. |
4046 | if ($fieldDescriptor->{relation} eq $type) { | my %mappedNameHash = (); |
4047 | # Here we have a primary relation field. Store the field value as | # Now we create the lists. Note that for every single name we push something into |
4048 | # a scalar. | # @fromList and @mappedNameList. This insures that those two arrays are exactly |
4049 | $this->{$name} = eval($codeString); | # parallel to $objectNames. |
4050 | for my $objectName (@{$objectNames}) { | |
4051 | # Get the next suffix for this object. | |
4052 | my $suffix = $objectHash{$objectName}; | |
4053 | if (! $suffix) { | |
4054 | # Here we are seeing the object for the first time. The object name | |
4055 | # is used as is. | |
4056 | push @mappedNameList, $objectName; | |
4057 | push @fromList, $objectName; | |
4058 | $mappedNameHash{$objectName} = $objectName; | |
4059 | # Denote the next suffix will be 2. | |
4060 | $objectHash{$objectName} = 2; | |
4061 | } else { | |
4062 | # Here we've seen the object before. We construct a new name using | |
4063 | # the suffix from the hash and update the hash. | |
4064 | my $mappedName = "$objectName$suffix"; | |
4065 | $objectHash{$objectName} = $suffix + 1; | |
4066 | # The FROM list has the object name followed by the mapped name. This | |
4067 | # tells SQL it's still the same table, but we're using a different name | |
4068 | # for it to avoid confusion. | |
4069 | push @fromList, "$objectName $mappedName"; | |
4070 | # The mapped-name list contains the real mapped name. | |
4071 | push @mappedNameList, $mappedName; | |
4072 | # Finally, enable us to get back from the mapped name to the object name. | |
4073 | $mappedNameHash{$mappedName} = $objectName; | |
4074 | } | |
4075 | } | |
4076 | # Begin the SELECT suffix. It starts with | |
4077 | # | |
4078 | # FROM name1, name2, ... nameN | |
4079 | # | |
4080 | my $suffix = "FROM " . join(', ', @fromList); | |
4081 | # Now for the WHERE. First, we need a place for the filter string. | |
4082 | my $filterString = ""; | |
4083 | # We will also keep a list of conditions to add to the WHERE clause in order to link | |
4084 | # entities and relationships as well as primary relations to secondary ones. | |
4085 | my @joinWhere = (); | |
4086 | # Check for a filter clause. | |
4087 | if ($filterClause) { | |
4088 | # Here we have one, so we convert its field names and add it to the query. First, | |
4089 | # We create a copy of the filter string we can work with. | |
4090 | $filterString = $filterClause; | |
4091 | # Next, we sort the object names by length. This helps protect us from finding | |
4092 | # object names inside other object names when we're doing our search and replace. | |
4093 | my @sortedNames = sort { length($b) - length($a) } @mappedNameList; | |
4094 | # The final preparatory step is to create a hash table of relation names. The | |
4095 | # table begins with the relation names already in the SELECT command. We may | |
4096 | # need to add relations later if there is filtering on a field in a secondary | |
4097 | # relation. The secondary relations are the ones that contain multiply- | |
4098 | # occurring or optional fields. | |
4099 | my %fromNames = map { $_ => 1 } @sortedNames; | |
4100 | # We are ready to begin. We loop through the object names, replacing each | |
4101 | # object name's field references by the corresponding SQL field reference. | |
4102 | # Along the way, if we find a secondary relation, we will need to add it | |
4103 | # to the FROM clause. | |
4104 | for my $mappedName (@sortedNames) { | |
4105 | # Get the length of the object name plus 2. This is the value we add to the | |
4106 | # size of the field name to determine the size of the field reference as a | |
4107 | # whole. | |
4108 | my $nameLength = 2 + length $mappedName; | |
4109 | # Get the real object name for this mapped name. | |
4110 | my $objectName = $mappedNameHash{$mappedName}; | |
4111 | Trace("Processing $mappedName for object $objectName.") if T(4); | |
4112 | # Get the object's field list. | |
4113 | my $fieldList = $self->GetFieldTable($objectName); | |
4114 | # Find the field references for this object. | |
4115 | while ($filterString =~ m/$mappedName\(([^)]*)\)/g) { | |
4116 | # At this point, $1 contains the field name, and the current position | |
4117 | # is set immediately after the final parenthesis. We pull out the name of | |
4118 | # the field and the position and length of the field reference as a whole. | |
4119 | my $fieldName = $1; | |
4120 | my $len = $nameLength + length $fieldName; | |
4121 | my $pos = pos($filterString) - $len; | |
4122 | # Insure the field exists. | |
4123 | if (!exists $fieldList->{$fieldName}) { | |
4124 | Confess("Field $fieldName not found for object $objectName."); | |
4125 | } else { | |
4126 | Trace("Processing $fieldName at position $pos.") if T(4); | |
4127 | # Get the field's relation. | |
4128 | my $relationName = $fieldList->{$fieldName}->{relation}; | |
4129 | # Now we have a secondary relation. We need to insure it matches the | |
4130 | # mapped name of the primary relation. First we peel off the suffix | |
4131 | # from the mapped name. | |
4132 | my $mappingSuffix = substr $mappedName, length($objectName); | |
4133 | # Put the mapping suffix onto the relation name to get the | |
4134 | # mapped relation name. | |
4135 | my $mappedRelationName = "$relationName$mappingSuffix"; | |
4136 | # Insure the relation is in the FROM clause. | |
4137 | if (!exists $fromNames{$mappedRelationName}) { | |
4138 | # Add the relation to the FROM clause. | |
4139 | if ($mappedRelationName eq $relationName) { | |
4140 | # The name is un-mapped, so we add it without | |
4141 | # any frills. | |
4142 | $suffix .= ", $relationName"; | |
4143 | push @joinWhere, "$objectName.id = $relationName.id"; | |
4144 | } else { | |
4145 | # Here we have a mapping situation. | |
4146 | $suffix .= ", $relationName $mappedRelationName"; | |
4147 | push @joinWhere, "$mappedRelationName.id = $mappedName.id"; | |
4148 | } | |
4149 | # Denote we have this relation available for future fields. | |
4150 | $fromNames{$mappedRelationName} = 1; | |
4151 | } | |
4152 | # Form an SQL field reference from the relation name and the field name. | |
4153 | my $sqlReference = "$mappedRelationName." . _FixName($fieldName); | |
4154 | # Put it into the filter string in place of the old value. | |
4155 | substr($filterString, $pos, $len) = $sqlReference; | |
4156 | # Reposition the search. | |
4157 | pos $filterString = $pos + length $sqlReference; | |
4158 | } | |
4159 | } | |
4160 | } | |
4161 | } | |
4162 | # The next step is to join the objects together. We only need to do this if there | |
4163 | # is more than one object in the object list. We start with the first object and | |
4164 | # run through the objects after it. Note also that we make a safety copy of the | |
4165 | # list before running through it, because we shift off the first object before | |
4166 | # processing the rest. | |
4167 | my @mappedObjectList = @mappedNameList; | |
4168 | my $lastMappedObject = shift @mappedObjectList; | |
4169 | # Get the join table. | |
4170 | my $joinTable = $self->{_metaData}->{Joins}; | |
4171 | # Loop through the object list. | |
4172 | for my $thisMappedObject (@mappedObjectList) { | |
4173 | # Look for a join using the real object names. | |
4174 | my $lastObject = $mappedNameHash{$lastMappedObject}; | |
4175 | my $thisObject = $mappedNameHash{$thisMappedObject}; | |
4176 | my $joinKey = "$lastObject/$thisObject"; | |
4177 | if (!exists $joinTable->{$joinKey}) { | |
4178 | # Here there's no join, so we throw an error. | |
4179 | Confess("No join exists to connect from $lastMappedObject to $thisMappedObject."); | |
4180 | } else { | } else { |
4181 | # Here we have a secondary relation field. Create a null list | # Get the join clause. |
4182 | # and push the desired number of field values onto it. | my $unMappedJoin = $joinTable->{$joinKey}; |
4183 | my @fieldValues = (); | # Fix the names. |
4184 | my $count = IntGen(0,$data->{testCount}); | $unMappedJoin =~ s/$lastObject/$lastMappedObject/; |
4185 | for (my $i = 0; $i < $count; $i++) { | $unMappedJoin =~ s/$thisObject/$thisMappedObject/; |
4186 | my $newValue = eval($codeString); | push @joinWhere, $unMappedJoin; |
4187 | push @fieldValues, $newValue; | # Save this object as the last object for the next iteration. |
4188 | $lastMappedObject = $thisMappedObject; | |
4189 | } | |
4190 | } | |
4191 | # Now we need to handle the whole ORDER BY / LIMIT thing. The important part | |
4192 | # here is we want the filter clause to be empty if there's no WHERE filter. | |
4193 | # We'll put the ORDER BY / LIMIT clauses in the following variable. | |
4194 | my $orderClause = ""; | |
4195 | # This is only necessary if we have a filter string in which the ORDER BY | |
4196 | # and LIMIT clauses can live. | |
4197 | if ($filterString) { | |
4198 | # Locate the ORDER BY or LIMIT verbs (if any). We use a non-greedy | |
4199 | # operator so that we find the first occurrence of either verb. | |
4200 | if ($filterString =~ m/^(.*?)\s*(ORDER BY|LIMIT)/g) { | |
4201 | # Here we have an ORDER BY or LIMIT verb. Split it off of the filter string. | |
4202 | my $pos = pos $filterString; | |
4203 | $orderClause = $2 . substr($filterString, $pos); | |
4204 | $filterString = $1; | |
4205 | } | |
4206 | } | } |
4207 | # Store the value list in the main hash. | # All the things that are supposed to be in the WHERE clause of the |
4208 | $this->{$name} = \@fieldValues; | # SELECT command need to be put into @joinWhere so we can string them |
4209 | # together. We begin with the match clause. This is important, | |
4210 | # because the match clause's parameter mark must precede any parameter | |
4211 | # marks in the filter string. | |
4212 | if ($matchClause) { | |
4213 | push @joinWhere, $matchClause; | |
4214 | } | } |
4215 | # Add the filter string. We put it in parentheses to avoid operator | |
4216 | # precedence problems with the match clause or the joins. | |
4217 | if ($filterString) { | |
4218 | Trace("Filter string is \"$filterString\".") if T(4); | |
4219 | push @joinWhere, "($filterString)"; | |
4220 | } | |
4221 | # String it all together into a big filter clause. | |
4222 | if (@joinWhere) { | |
4223 | $suffix .= " WHERE " . join(' AND ', @joinWhere); | |
4224 | } | } |
4225 | # Add the sort or limit clause (if any). | |
4226 | if ($orderClause) { | |
4227 | $suffix .= " $orderClause"; | |
4228 | } | |
4229 | # Return the suffix, the mapped name list, and the mapped name hash. | |
4230 | return ($suffix, \@mappedNameList, \%mappedNameHash); | |
4231 | } | |
4232 | ||
4233 | =head3 _GetStatementHandle | |
4234 | ||
4235 | This method will prepare and execute an SQL query, returning the statement handle. | |
4236 | The main reason for doing this here is so that everybody who does SQL queries gets | |
4237 | the benefit of tracing. | |
4238 | ||
4239 | This is an instance method. | |
4240 | ||
4241 | =over 4 | |
4242 | ||
4243 | =item command | |
4244 | ||
4245 | Command to prepare and execute. | |
4246 | ||
4247 | =item params | |
4248 | ||
4249 | Reference to a list of the values to be substituted in for the parameter marks. | |
4250 | ||
4251 | =item RETURN | |
4252 | ||
4253 | Returns a prepared and executed statement handle from which the caller can extract | |
4254 | results. | |
4255 | ||
4256 | =back | |
4257 | ||
4258 | =cut | |
4259 | ||
4260 | sub _GetStatementHandle { | |
4261 | # Get the parameters. | |
4262 | my ($self, $command, $params) = @_; | |
4263 | # Trace the query. | |
4264 | Trace("SQL query: $command") if T(SQL => 3); | |
4265 | Trace("PARMS: '" . (join "', '", @{$params}) . "'") if (T(SQL => 4) && (@{$params} > 0)); | |
4266 | # Get the database handle. | |
4267 | my $dbh = $self->{_dbh}; | |
4268 | # Prepare the command. | |
4269 | my $sth = $dbh->prepare_command($command); | |
4270 | # Execute it with the parameters bound in. | |
4271 | $sth->execute(@{$params}) || Confess("SELECT error: " . $sth->errstr()); | |
4272 | # Return the statement handle. | |
4273 | return $sth; | |
4274 | } | } |
4275 | ||
4276 | =head3 _GetLoadStats | |
4277 | ||
4278 | Return a blank statistics object for use by the load methods. | |
4279 | ||
4280 | This is a static method. | |
4281 | ||
4282 | =cut | |
4283 | ||
4284 | sub _GetLoadStats{ | |
4285 | return Stats->new(); | |
4286 | } | } |
4287 | ||
4288 | =head3 DumpRelation | =head3 _DumpRelation |
4289 | ||
4290 | Dump the specified relation's to the specified output file in tab-delimited format. | Dump the specified relation to the specified output file in tab-delimited format. |
4291 | ||
4292 | This is an instance method. | This is an instance method. |
4293 | ||
# | Line 1994 | Line 4335 |
4335 | close DTXOUT; | close DTXOUT; |
4336 | } | } |
4337 | ||
4338 | =head3 GetStructure | =head3 _GetStructure |
4339 | ||
4340 | Get the data structure for a specified entity or relationship. | Get the data structure for a specified entity or relationship. |
4341 | ||
# | Line 2033 | Line 4374 |
4374 | return $retVal; | return $retVal; |
4375 | } | } |
4376 | ||
4377 | =head3 GetRelationTable | |
4378 | ||
4379 | =head3 _GetRelationTable | |
4380 | ||
4381 | Get the list of relations for a specified entity or relationship. | Get the list of relations for a specified entity or relationship. |
4382 | ||
# | Line 2062 | Line 4405 |
4405 | return $objectData->{Relations}; | return $objectData->{Relations}; |
4406 | } | } |
4407 | ||
4408 | =head3 GetFieldTable | =head3 _ValidateFieldNames |
Get the field structure for a specified entity or relationship. | ||
This is an instance method. | ||
=over 4 | ||
=item objectName | ||
Name of the desired entity or relationship. | ||
=item RETURN | ||
The table containing the field descriptors for the specified object. | ||
=back | ||
=cut | ||
sub _GetFieldTable { | ||
# Get the parameters. | ||
my ($self, $objectName) = @_; | ||
# Get the descriptor from the metadata. | ||
my $objectData = $self->_GetStructure($objectName); | ||
# Return the object's field table. | ||
return $objectData->{Fields}; | ||
} | ||
=head3 ValidateFieldNames | ||
4409 | ||
4410 | Determine whether or not the field names are valid. A description of the problems with the names | Determine whether or not the field names are valid. A description of the problems with the names |
4411 | will be written to the standard error output. If there is an error, this method will abort. This is | will be written to the standard error output. If there is an error, this method will abort. This is |
# | Line 2118 | Line 4432 |
4432 | for my $object (values %{$metadata->{$section}}) { | for my $object (values %{$metadata->{$section}}) { |
4433 | # Loop through the object's fields. | # Loop through the object's fields. |
4434 | for my $fieldName (keys %{$object->{Fields}}) { | for my $fieldName (keys %{$object->{Fields}}) { |
4435 | # Now we make some initial validations. | # If this field name is invalid, set the return value to zero |
4436 | if ($fieldName =~ /--/) { | # so we know we encountered an error. |
4437 | # Here we have a doubled minus sign. | if (! ValidateFieldName($fieldName)) { |
print STDERR "Field name $fieldName has a doubled hyphen.\n"; | ||
4438 | $retVal = 0; | $retVal = 0; |
} elsif ($fieldName !~ /^[A-Za-z]/) { | ||
# Here the field name is missing the initial letter. | ||
print STDERR "Field name $fieldName does not begin with a letter.\n"; | ||
$retVal = 0; | ||
} else { | ||
# Strip out the minus signs. Everything remaining must be a letter | ||
# or digit. | ||
my $strippedName = $fieldName; | ||
$strippedName =~ s/-//g; | ||
if ($strippedName !~ /^[A-Za-z0-9]+$/) { | ||
print STDERR "Field name $fieldName contains illegal characters.\n"; | ||
$retVal = 0; | ||
} | ||
4439 | } | } |
4440 | } | } |
4441 | } | } |
# | Line 2146 | Line 4446 |
4446 | } | } |
4447 | } | } |
4448 | ||
4449 | =head3 LoadRelation | =head3 _LoadRelation |
4450 | ||
4451 | Load a relation from the data in a tab-delimited disk file. The load will only take place if a disk | Load a relation from the data in a tab-delimited disk file. The load will only take place if a disk |
4452 | file with the same name as the relation exists in the specified directory. | file with the same name as the relation exists in the specified directory. |
# | Line 2206 | Line 4506 |
4506 | return $retVal; | return $retVal; |
4507 | } | } |
4508 | ||
4509 | =head3 LoadMetaData | |
4510 | =head3 _LoadMetaData | |
4511 | ||
4512 | C<< my $metadata = ERDB::_LoadMetaData($filename); >> | |
4513 | ||
4514 | This method loads the data describing this database from an XML file into a metadata structure. | This method loads the data describing this database from an XML file into a metadata structure. |
4515 | The resulting structure is a set of nested hash tables containing all the information needed to | The resulting structure is a set of nested hash tables containing all the information needed to |
# | Line 2231 | Line 4534 |
4534 | sub _LoadMetaData { |