Parent Directory
|
Revision Log
|
Patch
revision 1.19, Fri Sep 9 14:50:58 2005 UTC | revision 1.81, Wed Dec 20 20:03:25 2006 UTC | |
---|---|---|
# | Line 9 | Line 9 |
9 | use DBObject; | use DBObject; |
10 | use Stats; | use Stats; |
11 | use Time::HiRes qw(gettimeofday); | use Time::HiRes qw(gettimeofday); |
12 | use Digest::MD5 qw(md5_base64); | |
13 | use FIG; | use FIG; |
14 | use CGI; | |
15 | ||
16 | =head1 Entity-Relationship Database Package | =head1 Entity-Relationship Database Package |
17 | ||
# | Line 58 | Line 60 |
60 | B<start-position>, which indicates where in the contig that the sequence begins. This attribute | B<start-position>, which indicates where in the contig that the sequence begins. This attribute |
61 | is implemented as the C<start_position> field in the C<IsMadeUpOf> relation. | is implemented as the C<start_position> field in the C<IsMadeUpOf> relation. |
62 | ||
63 | The database itself is described by an XML file using the F<ERDatabase.xsd> schema. In addition to | The database itself is described by an XML file. In addition to all the data required to define |
64 | all the data required to define the entities, relationships, and attributes, the schema provides | the entities, relationships, and attributes, the schema provides space for notes describing |
65 | space for notes describing the data and what it means. These notes are used by L</ShowMetaData> | the data and what it means. These notes are used by L</ShowMetaData> to generate documentation |
66 | to generate documentation for the database. | for the database. |
67 | ||
68 | Special support is provided for text searching. An entity field can be marked as <em>searchable</em>, | |
69 | in which case it will be used to generate a text search index in which the user searches for words | |
70 | in the field instead of a particular field value. | |
71 | ||
72 | Finally, every entity and relationship object has a flag indicating if it is new or old. The object | Finally, every entity and relationship object has a flag indicating if it is new or old. The object |
73 | is considered I<old> if it was loaded by the L</LoadTables> method. It is considered I<new> if it | is considered I<old> if it was loaded by the L</LoadTables> method. It is considered I<new> if it |
74 | was inserted by the L</InsertObject> method. | was inserted by the L</InsertObject> method. |
75 | ||
To facilitate testing, the ERDB module supports automatic generation of test data. This process | ||
is described in the L</GenerateEntity> and L</GenerateConnection> methods, though it is not yet | ||
fully implemented. | ||
76 | =head2 XML Database Description | =head2 XML Database Description |
77 | ||
78 | =head3 Data Types | =head3 Data Types |
# | Line 90 | Line 92 |
92 | ||
93 | 32-bit signed integer | 32-bit signed integer |
94 | ||
95 | =item counter | |
96 | ||
97 | 32-bit unsigned integer | |
98 | ||
99 | =item date | =item date |
100 | ||
101 | 64-bit unsigned integer, representing a PERL date/time value | 64-bit unsigned integer, representing a PERL date/time value |
# | Line 109 | Line 115 |
115 | compatability with certain database packages), but the only values supported are | compatability with certain database packages), but the only values supported are |
116 | 0 and 1. | 0 and 1. |
117 | ||
118 | =item id-string | |
119 | ||
120 | variable-length string, maximum 25 characters | |
121 | ||
122 | =item key-string | =item key-string |
123 | ||
124 | variable-length string, maximum 40 characters | variable-length string, maximum 40 characters |
# | Line 125 | Line 135 |
135 | ||
136 | variable-length string, maximum 255 characters | variable-length string, maximum 255 characters |
137 | ||
138 | =item hash-string | |
139 | ||
140 | variable-length string, maximum 22 characters | |
141 | ||
142 | =back | =back |
143 | ||
144 | The hash-string data type has a special meaning. The actual key passed into the loader will | |
145 | be a string, but it will be digested into a 22-character MD5 code to save space. Although the | |
146 | MD5 algorithm is not perfect, it is extremely unlikely two strings will have the same | |
147 | digest. Therefore, it is presumed the keys will be unique. When the database is actually | |
148 | in use, the hashed keys will be presented rather than the original values. For this reason, | |
149 | they should not be used for entities where the key is meaningful. | |
150 | ||
151 | =head3 Global Tags | =head3 Global Tags |
152 | ||
153 | The entire database definition must be inside a B<Database> tag. The display name of | The entire database definition must be inside a B<Database> tag. The display name of |
# | Line 170 | Line 191 |
191 | ||
192 | Name of the field. The field name should contain only letters, digits, and hyphens (C<->), | Name of the field. The field name should contain only letters, digits, and hyphens (C<->), |
193 | and the first character should be a letter. Most underlying databases are case-insensitive | and the first character should be a letter. Most underlying databases are case-insensitive |
194 | with the respect to field names, so a best practice is to use lower-case letters only. | with the respect to field names, so a best practice is to use lower-case letters only. Finally, |
195 | the name C<search-relevance> has special meaning for full-text searches and should not be | |
196 | used as a field name. | |
197 | ||
198 | =item type | =item type |
199 | ||
# | Line 189 | Line 212 |
212 | entity, the fields without a relation attribute are said to belong to the | entity, the fields without a relation attribute are said to belong to the |
213 | I<primary relation>. This relation has the same name as the entity itself. | I<primary relation>. This relation has the same name as the entity itself. |
214 | ||
215 | =item searchable | |
216 | ||
217 | If specified, then the field is a candidate for full-text searching. A single full-text | |
218 | index will be created for each relation with at least one searchable field in it. | |
219 | For best results, this option should only be used for string or text fields. | |
220 | ||
221 | =item special | |
222 | ||
223 | This attribute allows the subclass to assign special meaning for certain fields. | |
224 | The interpretation is up to the subclass itself. Currently, only entity fields | |
225 | can have this attribute. | |
226 | ||
227 | =back | =back |
228 | ||
229 | =head3 Indexes | =head3 Indexes |
230 | ||
231 | An entity can have multiple alternate indexes associated with it. The fields must | An entity can have multiple alternate indexes associated with it. The fields must |
232 | be from the primary relation. The alternate indexes assist in ordering results | all be from the same relation. The alternate indexes assist in ordering results |
233 | from a query. A relationship can have up to two indexes-- a I<to-index> and a | from a query. A relationship can have up to two indexes-- a I<to-index> and a |
234 | I<from-index>. These order the results when crossing the relationship. For | I<from-index>. These order the results when crossing the relationship. For |
235 | example, in the relationship C<HasContig> from C<Genome> to C<Contig>, the | example, in the relationship C<HasContig> from C<Genome> to C<Contig>, the |
# | Line 222 | Line 257 |
257 | ||
258 | =back | =back |
259 | ||
260 | The B<Index>, B<FromIndex>, and B<ToIndex> tags themselves have no attributes. | The B<FromIndex>, and B<ToIndex> tags have no attributes. The B<Index> tag can |
261 | have a B<Unique> attribute. If specified, the index will be generated as a unique | |
262 | index. | |
263 | ||
264 | =head3 Object and Field Names | =head3 Object and Field Names |
265 | ||
# | Line 300 | Line 337 |
337 | ||
338 | # Table of information about our datatypes. "sqlType" is the corresponding SQL datatype string. | # Table of information about our datatypes. "sqlType" is the corresponding SQL datatype string. |
339 | # "maxLen" is the maximum permissible length of the incoming string data used to populate a field | # "maxLen" is the maximum permissible length of the incoming string data used to populate a field |
340 | # of the specified type. "dataGen" is PERL string that will be evaluated if no test data generation | # of the specified type. "avgLen" is the average byte length for estimating |
341 | # string is specified in the field definition. "avgLen" is the average byte length for estimating | # record sizes. "sort" is the key modifier for the sort command, "notes" is a type description, |
342 | # record sizes. | # and "indexMod", if non-zero, is the number of characters to use when the field is specified in an |
343 | my %TypeTable = ( char => { sqlType => 'CHAR(1)', maxLen => 1, avgLen => 1, dataGen => "StringGen('A')" }, | # index |
344 | int => { sqlType => 'INTEGER', maxLen => 20, avgLen => 4, dataGen => "IntGen(0, 99999999)" }, | my %TypeTable = ( char => { sqlType => 'CHAR(1)', maxLen => 1, avgLen => 1, sort => "", |
345 | string => { sqlType => 'VARCHAR(255)', maxLen => 255, avgLen => 100, dataGen => "StringGen(IntGen(10,250))" }, | indexMod => 0, notes => "single ASCII character"}, |
346 | text => { sqlType => 'TEXT', maxLen => 1000000000, avgLen => 500, dataGen => "StringGen(IntGen(80,1000))" }, | int => { sqlType => 'INTEGER', maxLen => 20, avgLen => 4, sort => "n", |
347 | date => { sqlType => 'BIGINT', maxLen => 80, avgLen => 8, dataGen => "DateGen(-7, 7, IntGen(0,1400))" }, | indexMod => 0, notes => "signed 32-bit integer"}, |
348 | float => { sqlType => 'DOUBLE PRECISION', maxLen => 40, avgLen => 8, dataGen => "FloatGen(0.0, 100.0)" }, | counter => { sqlType => 'INTEGER UNSIGNED', maxLen => 20, avgLen => 4, sort => "n", |
349 | boolean => { sqlType => 'SMALLINT', maxLen => 1, avgLen => 2, dataGen => "IntGen(0, 1)" }, | indexMod => 0, notes => "unsigned 32-bit integer"}, |
350 | string => { sqlType => 'VARCHAR(255)', maxLen => 255, avgLen => 100, sort => "", | |
351 | indexMod => 0, notes => "character string, 0 to 255 characters"}, | |
352 | text => { sqlType => 'TEXT', maxLen => 1000000000, avgLen => 500, sort => "", | |
353 | indexMod => 255, notes => "character string, nearly unlimited length, only first 255 characters are indexed"}, | |
354 | date => { sqlType => 'BIGINT', maxLen => 80, avgLen => 8, sort => "n", | |
355 | indexMod => 0, notes => "signed, 64-bit integer"}, | |
356 | float => { sqlType => 'DOUBLE PRECISION', maxLen => 40, avgLen => 8, sort => "g", | |
357 | indexMod => 0, notes => "64-bit double precision floating-point number"}, | |
358 | boolean => { sqlType => 'SMALLINT', maxLen => 1, avgLen => 1, sort => "n", | |
359 | indexMod => 0, notes => "boolean value: 0 if false, 1 if true"}, | |
360 | 'hash-string' => | |
361 | { sqlType => 'VARCHAR(22)', maxLen => 22, avgLen => 22, sort => "", | |
362 | indexMod => 0, notes => "string stored in digested form, used for certain types of key fields"}, | |
363 | 'id-string' => | |
364 | { sqlType => 'VARCHAR(25)', maxLen => 25, avgLen => 25, sort => "", | |
365 | indexMod => 0, notes => "character string, 0 to 25 characters"}, | |
366 | 'key-string' => | 'key-string' => |
367 | { sqlType => 'VARCHAR(40)', maxLen => 40, avgLen => 10, dataGen => "StringGen(IntGen(10,40))" }, | { sqlType => 'VARCHAR(40)', maxLen => 40, avgLen => 10, sort => "", |
368 | indexMod => 0, notes => "character string, 0 to 40 characters"}, | |
369 | 'name-string' => | 'name-string' => |
370 | { sqlType => 'VARCHAR(80)', maxLen => 80, avgLen => 40, dataGen => "StringGen(IntGen(10,80))" }, | { sqlType => 'VARCHAR(80)', maxLen => 80, avgLen => 40, sort => "", |
371 | indexMod => 0, notes => "character string, 0 to 80 characters"}, | |
372 | 'medium-string' => | 'medium-string' => |
373 | { sqlType => 'VARCHAR(160)', maxLen => 160, avgLen => 40, dataGen => "StringGen(IntGen(10,160))" }, | { sqlType => 'VARCHAR(160)', maxLen => 160, avgLen => 40, sort => "", |
374 | indexMod => 0, notes => "character string, 0 to 160 characters"}, | |
375 | ); | ); |
376 | ||
377 | # Table translating arities into natural language. | # Table translating arities into natural language. |
# | Line 324 | Line 380 |
380 | 'MM' => 'many-to-many' | 'MM' => 'many-to-many' |
381 | ); | ); |
382 | ||
383 | # Table for interpreting string patterns. | # Options for XML input and output. |
384 | ||
385 | my %XmlOptions = (GroupTags => { Relationships => 'Relationship', | |
386 | Entities => 'Entity', | |
387 | Fields => 'Field', | |
388 | Indexes => 'Index', | |
389 | IndexFields => 'IndexField' | |
390 | }, | |
391 | KeyAttr => { Relationship => 'name', | |
392 | Entity => 'name', | |
393 | Field => 'name' | |
394 | }, | |
395 | SuppressEmpty => 1, | |
396 | ); | |
397 | ||
398 | my %PictureTable = ( 'A' => "abcdefghijklmnopqrstuvwxyz", | my %XmlInOpts = ( |
399 | '9' => "0123456789", | ForceArray => ['Field', 'Index', 'IndexField', 'Relationship', 'Entity'], |
400 | 'X' => "abcdefghijklmnopqrstuvwxyz0123456789", | ForceContent => 1, |
401 | 'V' => "aeiou", | NormalizeSpace => 2, |
'K' => "bcdfghjklmnoprstvwxyz" | ||
402 | ); | ); |
403 | my %XmlOutOpts = ( | |
404 | RootName => 'Database', | |
405 | XMLDecl => 1, | |
406 | ); | |
407 | ||
408 | ||
409 | =head2 Public Methods | =head2 Public Methods |
410 | ||
# | Line 402 | Line 475 |
475 | # Write the HTML heading stuff. | # Write the HTML heading stuff. |
476 | print HTMLOUT "<html>\n<head>\n<title>$title</title>\n"; | print HTMLOUT "<html>\n<head>\n<title>$title</title>\n"; |
477 | print HTMLOUT "</head>\n<body>\n"; | print HTMLOUT "</head>\n<body>\n"; |
478 | # Write the documentation. | |
479 | print HTMLOUT $self->DisplayMetaData(); | |
480 | # Close the document. | |
481 | print HTMLOUT "</body>\n</html>\n"; | |
482 | # Close the file. | |
483 | close HTMLOUT; | |
484 | } | |
485 | ||
486 | =head3 DisplayMetaData | |
487 | ||
488 | C<< my $html = $erdb->DisplayMetaData(); >> | |
489 | ||
490 | Return an HTML description of the database. This description can be used to help users create | |
491 | the data to be loaded into the relations and form queries. The output is raw includable HTML | |
492 | without any HEAD or BODY tags. | |
493 | ||
494 | =over 4 | |
495 | ||
496 | =item filename | |
497 | ||
498 | The name of the output file. | |
499 | ||
500 | =back | |
501 | ||
502 | =cut | |
503 | ||
504 | sub DisplayMetaData { | |
505 | # Get the parameters. | |
506 | my ($self) = @_; | |
507 | # Get the metadata and the title string. | |
508 | my $metadata = $self->{_metaData}; | |
509 | # Get the title string. | |
510 | my $title = $metadata->{Title}; | |
511 | # Get the entity and relationship lists. | |
512 | my $entityList = $metadata->{Entities}; | |
513 | my $relationshipList = $metadata->{Relationships}; | |
514 | # Declare the return variable. | |
515 | my $retVal = ""; | |
516 | # Open the output file. | |
517 | Trace("Building MetaData table of contents.") if T(4); | |
518 | # Here we do the table of contents. It starts as an unordered list of section names. Each | # Here we do the table of contents. It starts as an unordered list of section names. Each |
519 | # section contains an ordered list of entity or relationship subsections. | # section contains an ordered list of entity or relationship subsections. |
520 | print HTMLOUT "<ul>\n<li><a href=\"#EntitiesSection\">Entities</a>\n<ol>\n"; | $retVal .= "<ul>\n<li><a href=\"#EntitiesSection\">Entities</a>\n<ol>\n"; |
521 | # Loop through the Entities, displaying a list item for each. | # Loop through the Entities, displaying a list item for each. |
522 | foreach my $key (sort keys %{$entityList}) { | foreach my $key (sort keys %{$entityList}) { |
523 | # Display this item. | # Display this item. |
524 | print HTMLOUT "<li><a href=\"#$key\">$key</a></li>\n"; | $retVal .= "<li><a href=\"#$key\">$key</a></li>\n"; |
525 | } | } |
526 | # Close off the entity section and start the relationship section. | # Close off the entity section and start the relationship section. |
527 | print HTMLOUT "</ol></li>\n<li><a href=\"#RelationshipsSection\">Relationships</a>\n<ol>\n"; | $retVal .= "</ol></li>\n<li><a href=\"#RelationshipsSection\">Relationships</a>\n<ol>\n"; |
528 | # Loop through the Relationships. | # Loop through the Relationships. |
529 | foreach my $key (sort keys %{$relationshipList}) { | foreach my $key (sort keys %{$relationshipList}) { |
530 | # Display this item. | # Display this item. |
531 | my $relationshipTitle = _ComputeRelationshipSentence($key, $relationshipList->{$key}); | my $relationshipTitle = _ComputeRelationshipSentence($key, $relationshipList->{$key}); |
532 | print HTMLOUT "<li><a href=\"#$key\">$relationshipTitle</a></li>\n"; | $retVal .= "<li><a href=\"#$key\">$relationshipTitle</a></li>\n"; |
533 | } | } |
534 | # Close off the relationship section and list the join table section. | # Close off the relationship section and list the join table section. |
535 | print HTMLOUT "</ol></li>\n<li><a href=\"#JoinTable\">Join Table</a></li>\n"; | $retVal .= "</ol></li>\n<li><a href=\"#JoinTable\">Join Table</a></li>\n"; |
536 | # Close off the table of contents itself. | # Close off the table of contents itself. |
537 | print HTMLOUT "</ul>\n"; | $retVal .= "</ul>\n"; |
538 | # Now we start with the actual data. Denote we're starting the entity section. | # Now we start with the actual data. Denote we're starting the entity section. |
539 | print HTMLOUT "<a name=\"EntitiesSection\"></a><h2>Entities</h2>\n"; | $retVal .= "<a name=\"EntitiesSection\"></a><h2>Entities</h2>\n"; |
540 | # Loop through the entities. | # Loop through the entities. |
541 | for my $key (sort keys %{$entityList}) { | for my $key (sort keys %{$entityList}) { |
542 | Trace("Building MetaData entry for $key entity.") if T(4); | Trace("Building MetaData entry for $key entity.") if T(4); |
543 | # Create the entity header. It contains a bookmark and the entity name. | # Create the entity header. It contains a bookmark and the entity name. |
544 | print HTMLOUT "<a name=\"$key\"></a><h3>$key</h3>\n"; | $retVal .= "<a name=\"$key\"></a><h3>$key</h3>\n"; |
545 | # Get the entity data. | # Get the entity data. |
546 | my $entityData = $entityList->{$key}; | my $entityData = $entityList->{$key}; |
547 | # If there's descriptive text, display it. | # If there's descriptive text, display it. |
548 | if (my $notes = $entityData->{Notes}) { | if (my $notes = $entityData->{Notes}) { |
549 | print HTMLOUT "<p>" . _HTMLNote($notes->{content}) . "</p>\n"; | $retVal .= "<p>" . HTMLNote($notes->{content}) . "</p>\n"; |
550 | } | } |
551 | # Now we want a list of the entity's relationships. First, we set up the relationship subsection. | # Now we want a list of the entity's relationships. First, we set up the relationship subsection. |
552 | print HTMLOUT "<h4>Relationships for <b>$key</b></h4>\n<ul>\n"; | $retVal .= "<h4>Relationships for <b>$key</b></h4>\n<ul>\n"; |
553 | # Loop through the relationships. | # Loop through the relationships. |
554 | for my $relationship (sort keys %{$relationshipList}) { | for my $relationship (sort keys %{$relationshipList}) { |
555 | # Get the relationship data. | # Get the relationship data. |
# | Line 446 | Line 559 |
559 | # Get the relationship sentence and append the arity. | # Get the relationship sentence and append the arity. |
560 | my $relationshipDescription = _ComputeRelationshipSentence($relationship, $relationshipStructure); | my $relationshipDescription = _ComputeRelationshipSentence($relationship, $relationshipStructure); |
561 | # Display the relationship data. | # Display the relationship data. |
562 | print HTMLOUT "<li><a href=\"#$relationship\">$relationshipDescription</a></li>\n"; | $retVal .= "<li><a href=\"#$relationship\">$relationshipDescription</a></li>\n"; |
563 | } | } |
564 | } | } |
565 | # Close off the relationship list. | # Close off the relationship list. |
566 | print HTMLOUT "</ul>\n"; | $retVal .= "</ul>\n"; |
567 | # Get the entity's relations. | # Get the entity's relations. |
568 | my $relationList = $entityData->{Relations}; | my $relationList = $entityData->{Relations}; |
569 | # Create a header for the relation subsection. | # Create a header for the relation subsection. |
570 | print HTMLOUT "<h4>Relations for <b>$key</b></h4>\n"; | $retVal .= "<h4>Relations for <b>$key</b></h4>\n"; |
571 | # Loop through the relations, displaying them. | # Loop through the relations, displaying them. |
572 | for my $relation (sort keys %{$relationList}) { | for my $relation (sort keys %{$relationList}) { |
573 | my $htmlString = _ShowRelationTable($relation, $relationList->{$relation}); | my $htmlString = _ShowRelationTable($relation, $relationList->{$relation}); |
574 | print HTMLOUT $htmlString; | $retVal .= $htmlString; |
575 | } | } |
576 | } | } |
577 | # Denote we're starting the relationship section. | # Denote we're starting the relationship section. |
578 | print HTMLOUT "<a name=\"RelationshipsSection\"></a><h2>Relationships</h2>\n"; | $retVal .= "<a name=\"RelationshipsSection\"></a><h2>Relationships</h2>\n"; |
579 | # Loop through the relationships. | # Loop through the relationships. |
580 | for my $key (sort keys %{$relationshipList}) { | for my $key (sort keys %{$relationshipList}) { |
581 | Trace("Building MetaData entry for $key relationship.") if T(4); | Trace("Building MetaData entry for $key relationship.") if T(4); |
# | Line 470 | Line 583 |
583 | my $relationshipStructure = $relationshipList->{$key}; | my $relationshipStructure = $relationshipList->{$key}; |
584 | # Create the relationship header. | # Create the relationship header. |
585 | my $headerText = _ComputeRelationshipHeading($key, $relationshipStructure); | my $headerText = _ComputeRelationshipHeading($key, $relationshipStructure); |
586 | print HTMLOUT "<h3><a name=\"$key\"></a>$headerText</h3>\n"; | $retVal .= "<h3><a name=\"$key\"></a>$headerText</h3>\n"; |
587 | # Get the entity names. | # Get the entity names. |
588 | my $fromEntity = $relationshipStructure->{from}; | my $fromEntity = $relationshipStructure->{from}; |
589 | my $toEntity = $relationshipStructure->{to}; | my $toEntity = $relationshipStructure->{to}; |
# | Line 480 | Line 593 |
593 | # since both sentences will say the same thing. | # since both sentences will say the same thing. |
594 | my $arity = $relationshipStructure->{arity}; | my $arity = $relationshipStructure->{arity}; |
595 | if ($arity eq "11") { | if ($arity eq "11") { |
596 | print HTMLOUT "<p>Each <b>$fromEntity</b> relates to at most one <b>$toEntity</b>.\n"; | $retVal .= "<p>Each <b>$fromEntity</b> relates to at most one <b>$toEntity</b>.\n"; |
597 | } else { | } else { |
598 | print HTMLOUT "<p>Each <b>$fromEntity</b> relates to multiple <b>$toEntity</b>s.\n"; | $retVal .= "<p>Each <b>$fromEntity</b> relates to multiple <b>$toEntity</b>s.\n"; |
599 | if ($arity eq "MM" && $fromEntity ne $toEntity) { | if ($arity eq "MM" && $fromEntity ne $toEntity) { |
600 | print HTMLOUT "Each <b>$toEntity</b> relates to multiple <b>$fromEntity</b>s.\n"; | $retVal .= "Each <b>$toEntity</b> relates to multiple <b>$fromEntity</b>s.\n"; |
601 | } | } |
602 | } | } |
603 | print HTMLOUT "</p>\n"; | $retVal .= "</p>\n"; |
604 | # If there are notes on this relationship, display them. | # If there are notes on this relationship, display them. |
605 | if (my $notes = $relationshipStructure->{Notes}) { | if (my $notes = $relationshipStructure->{Notes}) { |
606 | print HTMLOUT "<p>" . _HTMLNote($notes->{content}) . "</p>\n"; | $retVal .= "<p>" . HTMLNote($notes->{content}) . "</p>\n"; |
607 | } | } |
608 | # Generate the relationship's relation table. | # Generate the relationship's relation table. |
609 | my $htmlString = _ShowRelationTable($key, $relationshipStructure->{Relations}->{$key}); | my $htmlString = _ShowRelationTable($key, $relationshipStructure->{Relations}->{$key}); |
610 | print HTMLOUT $htmlString; | $retVal .= $htmlString; |
611 | } | } |
612 | Trace("Building MetaData join table.") if T(4); | Trace("Building MetaData join table.") if T(4); |
613 | # Denote we're starting the join table. | # Denote we're starting the join table. |
614 | print HTMLOUT "<a name=\"JoinTable\"></a><h3>Join Table</h3>\n"; | $retVal .= "<a name=\"JoinTable\"></a><h3>Join Table</h3>\n"; |
615 | # Create a table header. | # Create a table header. |
616 | print HTMLOUT _OpenTable("Join Table", "Source", "Target", "Join Condition"); | $retVal .= _OpenTable("Join Table", "Source", "Target", "Join Condition"); |
617 | # Loop through the joins. | # Loop through the joins. |
618 | my $joinTable = $metadata->{Joins}; | my $joinTable = $metadata->{Joins}; |
619 | my @joinKeys = keys %{$joinTable}; | my @joinKeys = keys %{$joinTable}; |
# | Line 508 | Line 621 |
621 | # Separate out the source, the target, and the join clause. | # Separate out the source, the target, and the join clause. |
622 | $joinKey =~ m!^([^/]+)/(.+)$!; | $joinKey =~ m!^([^/]+)/(.+)$!; |
623 | my ($sourceRelation, $targetRelation) = ($1, $2); | my ($sourceRelation, $targetRelation) = ($1, $2); |
624 | Trace("Join with key $joinKey is from $sourceRelation to $targetRelation.") if T(4); | Trace("Join with key $joinKey is from $sourceRelation to $targetRelation.") if T(Joins => 4); |
625 | my $source = $self->ComputeObjectSentence($sourceRelation); | my $source = $self->ComputeObjectSentence($sourceRelation); |
626 | my $target = $self->ComputeObjectSentence($targetRelation); | my $target = $self->ComputeObjectSentence($targetRelation); |
627 | my $clause = $joinTable->{$joinKey}; | my $clause = $joinTable->{$joinKey}; |
628 | # Display them in a table row. | # Display them in a table row. |
629 | print HTMLOUT "<tr><td>$source</td><td>$target</td><td>$clause</td></tr>\n"; | $retVal .= "<tr><td>$source</td><td>$target</td><td>$clause</td></tr>\n"; |
630 | } | } |
631 | # Close the table. | # Close the table. |
632 | print HTMLOUT _CloseTable(); | $retVal .= _CloseTable(); |
633 | # Close the document. | Trace("Built MetaData HTML.") if T(3); |
634 | print HTMLOUT "</body>\n</html>\n"; | # Return the HTML. |
635 | # Close the file. | return $retVal; |
close HTMLOUT; | ||
Trace("Built MetaData web page.") if T(3); | ||
636 | } | } |
637 | ||
638 | =head3 DumpMetaData | =head3 DumpMetaData |
# | Line 539 | Line 650 |
650 | return Data::Dumper::Dumper($self->{_metaData}); | return Data::Dumper::Dumper($self->{_metaData}); |
651 | } | } |
652 | ||
653 | =head3 FindIndexForEntity | |
654 | ||
655 | C<< my $indexFound = ERDB::FindIndexForEntity($xml, $entityName, $attributeName); >> | |
656 | ||
657 | This method locates the entry in an entity's index list that begins with the | |
658 | specified attribute name. If the entity has no index list, one will be | |
659 | created. This method works on raw XML, not a live ERDB object. | |
660 | ||
661 | =over 4 | |
662 | ||
663 | =item xml | |
664 | ||
665 | The raw XML structure defining the database. | |
666 | ||
667 | =item entityName | |
668 | ||
669 | The name of the relevant entity. | |
670 | ||
671 | =item attributeName | |
672 | ||
673 | The name of the attribute relevant to the search. | |
674 | ||
675 | =item RETURN | |
676 | ||
677 | The numerical index in the index list of the index entry for the specified entity and | |
678 | attribute, or C<undef> if no such index exists. | |
679 | ||
680 | =back | |
681 | ||
682 | =cut | |
683 | ||
684 | sub FindIndexForEntity { | |
685 | # Get the parameters. | |
686 | my ($xml, $entityName, $attributeName) = @_; | |
687 | # Declare the return variable. | |
688 | my $retVal; | |
689 | # Get the named entity. | |
690 | my $entityData = $xml->{Entities}->{$entityName}; | |
691 | if (! $entityData) { | |
692 | Confess("Entity $entityName not found in DBD structure."); | |
693 | } else { | |
694 | # Insure it has an index list. | |
695 | if (! exists $entityData->{Indexes}) { | |
696 | $entityData->{Indexes} = []; | |
697 | } else { | |
698 | # Search for the desired index. | |
699 | my $indexList = $entityData->{Indexes}; | |
700 | my $n = scalar @{$indexList}; | |
701 | Trace("Searching $n indexes in index list for $entityName.") if T(2); | |
702 | # We use an indexed FOR here because we're returning an | |
703 | # index number instead of an object. We do THAT so we can | |
704 | # delete the index from the list if needed. | |
705 | for (my $i = 0; $i < $n && !defined($retVal); $i++) { | |
706 | my $index = $indexList->[$i]; | |
707 | my $fields = $index->{IndexFields}; | |
708 | # Technically this IF should be safe (that is, we are guaranteed | |
709 | # the existence of a "$fields->[0]"), because when we load the XML | |
710 | # we have SuppressEmpty specified. | |
711 | if ($fields->[0]->{name} eq $attributeName) { | |
712 | $retVal = $i; | |
713 | } | |
714 | } | |
715 | } | |
716 | } | |
717 | Trace("Index for $attributeName of $entityName found at position $retVal.") if defined($retVal) && T(3); | |
718 | Trace("Index for $attributeName not found in $entityName.") if !defined($retVal) && T(3); | |
719 | # Return the result. | |
720 | return $retVal; | |
721 | } | |
722 | ||
723 | =head3 CreateTables | =head3 CreateTables |
724 | ||
725 | C<< $erdb->CreateTables(); >> | C<< $erdb->CreateTables(); >> |
# | Line 553 | Line 734 |
734 | sub CreateTables { | sub CreateTables { |
735 | # Get the parameters. | # Get the parameters. |
736 | my ($self) = @_; | my ($self) = @_; |
737 | my $metadata = $self->{_metaData}; | # Get the relation names. |
738 | my $dbh = $self->{_dbh}; | my @relNames = $self->GetTableNames(); |
739 | # Loop through the entities. | # Loop through the relations. |
740 | my $entityHash = $metadata->{Entities}; | for my $relationName (@relNames) { |
for my $entityName (keys %{$entityHash}) { | ||
my $entityData = $entityHash->{$entityName}; | ||
# Tell the user what we're doing. | ||
Trace("Creating relations for entity $entityName.") if T(1); | ||
# Loop through the entity's relations. | ||
for my $relationName (keys %{$entityData->{Relations}}) { | ||
741 | # Create a table for this relation. | # Create a table for this relation. |
742 | $self->CreateTable($relationName); | $self->CreateTable($relationName); |
743 | Trace("Relation $relationName created.") if T(1); | Trace("Relation $relationName created.") if T(2); |
} | ||
} | ||
# Loop through the relationships. | ||
my $relationshipTable = $metadata->{Relationships}; | ||
for my $relationshipName (keys %{$metadata->{Relationships}}) { | ||
# Create a table for this relationship. | ||
Trace("Creating relationship $relationshipName.") if T(1); | ||
$self->CreateTable($relationshipName); | ||
744 | } | } |
745 | } | } |
746 | ||
# | Line 640 | Line 807 |
807 | Trace("Creating table $relationName: $fieldThing") if T(2); | Trace("Creating table $relationName: $fieldThing") if T(2); |
808 | $dbh->create_table(tbl => $relationName, flds => $fieldThing, estimates => $estimation); | $dbh->create_table(tbl => $relationName, flds => $fieldThing, estimates => $estimation); |
809 | Trace("Relation $relationName created in database.") if T(2); | Trace("Relation $relationName created in database.") if T(2); |
810 | # If we want to build the indexes, we do it here. | # If we want to build the indexes, we do it here. Note that the full-text search |
811 | # index will not be built until the table has been loaded. | |
812 | if ($indexFlag) { | if ($indexFlag) { |
813 | $self->CreateIndex($relationName); | $self->CreateIndex($relationName); |
814 | } | } |
815 | } | } |
816 | ||
817 | =head3 VerifyFields | |
818 | ||
819 | C<< my $count = $erdb->VerifyFields($relName, \@fieldList); >> | |
820 | ||
821 | Run through the list of proposed field values, insuring that all the character fields are | |
822 | below the maximum length. If any fields are too long, they will be truncated in place. | |
823 | ||
824 | =over 4 | |
825 | ||
826 | =item relName | |
827 | ||
828 | Name of the relation for which the specified fields are destined. | |
829 | ||
830 | =item fieldList | |
831 | ||
832 | Reference to a list, in order, of the fields to be put into the relation. | |
833 | ||
834 | =item RETURN | |
835 | ||
836 | Returns the number of fields truncated. | |
837 | ||
838 | =back | |
839 | ||
840 | =cut | |
841 | ||
842 | sub VerifyFields { | |
843 | # Get the parameters. | |
844 | my ($self, $relName, $fieldList) = @_; | |
845 | # Initialize the return value. | |
846 | my $retVal = 0; | |
847 | # Get the relation definition. | |
848 | my $relData = $self->_FindRelation($relName); | |
849 | # Get the list of field descriptors. | |
850 | my $fieldTypes = $relData->{Fields}; | |
851 | my $fieldCount = scalar @{$fieldTypes}; | |
852 | # Loop through the two lists. | |
853 | for (my $i = 0; $i < $fieldCount; $i++) { | |
854 | # Get the type of the current field. | |
855 | my $fieldType = $fieldTypes->[$i]->{type}; | |
856 | # If it's a character field, verify the length. | |
857 | if ($fieldType =~ /string/) { | |
858 | my $maxLen = $TypeTable{$fieldType}->{maxLen}; | |
859 | my $oldString = $fieldList->[$i]; | |
860 | if (length($oldString) > $maxLen) { | |
861 | # Here it's too big, so we truncate it. | |
862 | Trace("Truncating field $i in relation $relName to $maxLen characters from \"$oldString\".") if T(1); | |
863 | $fieldList->[$i] = substr $oldString, 0, $maxLen; | |
864 | $retVal++; | |
865 | } | |
866 | } | |
867 | } | |
868 | # Return the truncation count. | |
869 | return $retVal; | |
870 | } | |
871 | ||
872 | =head3 DigestFields | |
873 | ||
874 | C<< $erdb->DigestFields($relName, $fieldList); >> | |
875 | ||
876 | Digest the strings in the field list that correspond to data type C<hash-string> in the | |
877 | specified relation. | |
878 | ||
879 | =over 4 | |
880 | ||
881 | =item relName | |
882 | ||
883 | Name of the relation to which the fields belong. | |
884 | ||
885 | =item fieldList | |
886 | ||
887 | List of field contents to be loaded into the relation. | |
888 | ||
889 | =back | |
890 | ||
891 | =cut | |
892 | #: Return Type ; | |
893 | sub DigestFields { | |
894 | # Get the parameters. | |
895 | my ($self, $relName, $fieldList) = @_; | |
896 | # Get the relation definition. | |
897 | my $relData = $self->_FindRelation($relName); | |
898 | # Get the list of field descriptors. | |
899 | my $fieldTypes = $relData->{Fields}; | |
900 | my $fieldCount = scalar @{$fieldTypes}; | |
901 | # Loop through the two lists. | |
902 | for (my $i = 0; $i < $fieldCount; $i++) { | |
903 | # Get the type of the current field. | |
904 | my $fieldType = $fieldTypes->[$i]->{type}; | |
905 | # If it's a hash string, digest it in place. | |
906 | if ($fieldType eq 'hash-string') { | |
907 | $fieldList->[$i] = $self->DigestKey($fieldList->[$i]); | |
908 | } | |
909 | } | |
910 | } | |
911 | ||
912 | =head3 DigestKey | |
913 | ||
914 | C<< my $digested = $erdb->DigestKey($keyValue); >> | |
915 | ||
916 | Return the digested value of a symbolic key. The digested value can then be plugged into a | |
917 | key-based search into a table with key-type hash-string. | |
918 | ||
919 | Currently the digesting process is independent of the database structure, but that may not | |
920 | always be the case, so this is an instance method instead of a static method. | |
921 | ||
922 | =over 4 | |
923 | ||
924 | =item keyValue | |
925 | ||
926 | Key value to digest. | |
927 | ||
928 | =item RETURN | |
929 | ||
930 | Digested value of the key. | |
931 | ||
932 | =back | |
933 | ||
934 | =cut | |
935 | ||
936 | sub DigestKey { | |
937 | # Get the parameters. | |
938 | my ($self, $keyValue) = @_; | |
939 | # Compute the digest. | |
940 | my $retVal = md5_base64($keyValue); | |
941 | # Return the result. | |
942 | return $retVal; | |
943 | } | |
944 | ||
945 | =head3 CreateIndex | =head3 CreateIndex |
946 | ||
947 | C<< $erdb->CreateIndex($relationName); >> | C<< $erdb->CreateIndex($relationName); >> |
# | Line 669 | Line 965 |
965 | for my $indexName (keys %{$indexHash}) { | for my $indexName (keys %{$indexHash}) { |
966 | my $indexData = $indexHash->{$indexName}; | my $indexData = $indexHash->{$indexName}; |
967 | # Get the index's field list. | # Get the index's field list. |
968 | my @fieldList = _FixNames(@{$indexData->{IndexFields}}); | my @rawFields = @{$indexData->{IndexFields}}; |
969 | # Get a hash of the relation's field types. | |
970 | my %types = map { $_->{name} => $_->{type} } @{$relationData->{Fields}}; | |
971 | # We need to check for text fields so we can append a length limitation for them. To do | |
972 | # that, we need the relation's field list. | |
973 | my $relFields = $relationData->{Fields}; | |
974 | for (my $i = 0; $i <= $#rawFields; $i++) { | |
975 | # Get the field type. | |
976 | my $field = $rawFields[$i]; | |
977 | my $type = $types{$field}; | |
978 | # Ask if it requires using prefix notation for the index. | |
979 | my $mod = $TypeTable{$type}->{indexMod}; | |
980 | Trace("Field $field ($i) in $relationName has type $type and indexMod $mod.") if T(3); | |
981 | if ($mod) { | |
982 | # Append the prefix length to the field name, | |
983 | $rawFields[$i] .= "($mod)"; | |
984 | } | |
985 | } | |
986 | my @fieldList = _FixNames(@rawFields); | |
987 | my $flds = join(', ', @fieldList); | my $flds = join(', ', @fieldList); |
988 | # Get the index's uniqueness flag. | # Get the index's uniqueness flag. |
989 | my $unique = (exists $indexData->{Unique} ? $indexData->{Unique} : 'false'); | my $unique = (exists $indexData->{Unique} ? 'unique' : undef); |
990 | # Create the index. | # Create the index. |
991 | $dbh->create_index(idx => $indexName, tbl => $relationName, flds => $flds, unique => $unique); | my $rv = $dbh->create_index(idx => $indexName, tbl => $relationName, |
992 | flds => $flds, kind => $unique); | |
993 | if ($rv) { | |
994 | Trace("Index created: $indexName for $relationName ($flds)") if T(1); | Trace("Index created: $indexName for $relationName ($flds)") if T(1); |
995 | } else { | |
996 | Confess("Error creating index $indexName for $relationName using ($flds): " . $dbh->error_message()); | |
997 | } | |
998 | } | |
999 | } | |
1000 | ||
1001 | =head3 GetSecondaryFields | |
1002 | ||
1003 | C<< my %fieldTuples = $erdb->GetSecondaryFields($entityName); >> | |
1004 | ||
1005 | This method will return a list of the name and type of each of the secondary | |
1006 | fields for a specified entity. Secondary fields are stored in two-column tables | |
1007 | in addition to the primary entity table. This enables the field to have no value | |
1008 | or to have multiple values. | |
1009 | ||
1010 | =over 4 | |
1011 | ||
1012 | =item entityName | |
1013 | ||
1014 | Name of the entity whose secondary fields are desired. | |
1015 | ||
1016 | =item RETURN | |
1017 | ||
1018 | Returns a hash mapping the field names to their field types. | |
1019 | ||
1020 | =back | |
1021 | ||
1022 | =cut | |
1023 | ||
1024 | sub GetSecondaryFields { | |
1025 | # Get the parameters. | |
1026 | my ($self, $entityName) = @_; | |
1027 | # Declare the return variable. | |
1028 | my %retVal = (); | |
1029 | # Look for the entity. | |
1030 | my $table = $self->GetFieldTable($entityName); | |
1031 | # Loop through the fields, pulling out the secondaries. | |
1032 | for my $field (sort keys %{$table}) { | |
1033 | if ($table->{$field}->{relation} ne $entityName) { | |
1034 | # Here we have a secondary field. | |
1035 | $retVal{$field} = $table->{$field}->{type}; | |
1036 | } | |
1037 | } | |
1038 | # Return the result. | |
1039 | return %retVal; | |
1040 | } | |
1041 | ||
1042 | =head3 GetFieldRelationName | |
1043 | ||
1044 | C<< my $name = $erdb->GetFieldRelationName($objectName, $fieldName); >> | |
1045 | ||
1046 | Return the name of the relation containing a specified field. | |
1047 | ||
1048 | =over 4 | |
1049 | ||
1050 | =item objectName | |
1051 | ||
1052 | Name of the entity or relationship containing the field. | |
1053 | ||
1054 | =item fieldName | |
1055 | ||
1056 | Name of the relevant field in that entity or relationship. | |
1057 | ||
1058 | =item RETURN | |
1059 | ||
1060 | Returns the name of the database relation containing the field, or C<undef> if | |
1061 | the field does not exist. | |
1062 | ||
1063 | =back | |
1064 | ||
1065 | =cut | |
1066 | ||
1067 | sub GetFieldRelationName { | |
1068 | # Get the parameters. | |
1069 | my ($self, $objectName, $fieldName) = @_; | |
1070 | # Declare the return variable. | |
1071 | my $retVal; | |
1072 | # Get the object field table. | |
1073 | my $table = $self->GetFieldTable($objectName); | |
1074 | # Only proceed if the field exists. | |
1075 | if (exists $table->{$fieldName}) { | |
1076 | # Determine the name of the relation that contains this field. | |
1077 | $retVal = $table->{$fieldName}->{relation}; | |
1078 | } | |
1079 | # Return the result. | |
1080 | return $retVal; | |
1081 | } | |
1082 | ||
1083 | =head3 DeleteValue | |
1084 | ||
1085 | C<< my $numDeleted = $erdb->DeleteValue($entityName, $id, $fieldName, $fieldValue); >> | |
1086 | ||
1087 | Delete secondary field values from the database. This method can be used to delete all | |
1088 | values of a specified field for a particular entity instance, or only a single value. | |
1089 | ||
1090 | Secondary fields are stored in two-column relations separate from an entity's primary | |
1091 | table, and as a result a secondary field can legitimately have no value or multiple | |
1092 | values. Therefore, it makes sense to talk about deleting secondary fields where it | |
1093 | would not make sense for primary fields. | |
1094 | ||
1095 | =over 4 | |
1096 | ||
1097 | =item entityName | |
1098 | ||
1099 | Name of the entity from which the fields are to be deleted. | |
1100 | ||
1101 | =item id | |
1102 | ||
1103 | ID of the entity instance to be processed. If the instance is not found, this | |
1104 | method will have no effect. If C<undef> is specified, all values for all of | |
1105 | the entity instances will be deleted. | |
1106 | ||
1107 | =item fieldName | |
1108 | ||
1109 | Name of the field whose values are to be deleted. | |
1110 | ||
1111 | =item fieldValue (optional) | |
1112 | ||
1113 | Value to be deleted. If not specified, then all values of the specified field | |
1114 | will be deleted for the entity instance. If specified, then only the values which | |
1115 | match this parameter will be deleted. | |
1116 | ||
1117 | =item RETURN | |
1118 | ||
1119 | Returns the number of rows deleted. | |
1120 | ||
1121 | =back | |
1122 | ||
1123 | =cut | |
1124 | ||
1125 | sub DeleteValue { | |
1126 | # Get the parameters. | |
1127 | my ($self, $entityName, $id, $fieldName, $fieldValue) = @_; | |
1128 | # Declare the return value. | |
1129 | my $retVal = 0; | |
1130 | # We need to set up an SQL command to do the deletion. First, we | |
1131 | # find the name of the field's relation. | |
1132 | my $table = $self->GetFieldTable($entityName); | |
1133 | my $field = $table->{$fieldName}; | |
1134 | my $relation = $field->{relation}; | |
1135 | # Make sure this is a secondary field. | |
1136 | if ($relation eq $entityName) { | |
1137 | Confess("Cannot delete values of $fieldName for $entityName."); | |
1138 | } else { | |
1139 | # Set up the SQL command to delete all values. | |
1140 | my $sql = "DELETE FROM $relation"; | |
1141 | # Build the filter. | |
1142 | my @filters = (); | |
1143 | my @parms = (); | |
1144 | # Check for a filter by ID. | |
1145 | if (defined $id) { | |
1146 | push @filters, "id = ?"; | |
1147 | push @parms, $id; | |
1148 | } | |
1149 | # Check for a filter by value. | |
1150 | if (defined $fieldValue) { | |
1151 | push @filters, "$fieldName = ?"; | |
1152 | push @parms, $fieldValue; | |
1153 | } | |
1154 | # Append the filters to the command. | |
1155 | if (@filters) { | |
1156 | $sql .= " WHERE " . join(" AND ", @filters); | |
1157 | } | |
1158 | # Execute the command. | |
1159 | my $dbh = $self->{_dbh}; | |
1160 | $retVal = $dbh->SQL($sql, 0, @parms); | |
1161 | } | } |
1162 | # Return the result. | |
1163 | return $retVal; | |
1164 | } | } |
1165 | ||
1166 | =head3 LoadTables | =head3 LoadTables |
# | Line 724 | Line 1208 |
1208 | $directoryName =~ s!/\\$!!; | $directoryName =~ s!/\\$!!; |
1209 | # Declare the return variable. | # Declare the return variable. |
1210 | my $retVal = Stats->new(); | my $retVal = Stats->new(); |
1211 | # Get the metadata structure. | # Get the relation names. |
1212 | my $metaData = $self->{_metaData}; | my @relNames = $self->GetTableNames(); |
1213 | # Loop through the entities. | for my $relationName (@relNames) { |
for my $entity (values %{$metaData->{Entities}}) { | ||
# Loop through the entity's relations. | ||
for my $relationName (keys %{$entity->{Relations}}) { | ||
1214 | # Try to load this relation. | # Try to load this relation. |
1215 | my $result = $self->_LoadRelation($directoryName, $relationName, $rebuild); | my $result = $self->_LoadRelation($directoryName, $relationName, $rebuild); |
1216 | # Accumulate the statistics. | # Accumulate the statistics. |
1217 | $retVal->Accumulate($result); | $retVal->Accumulate($result); |
1218 | } | } |
} | ||
# Loop through the relationships. | ||
for my $relationshipName (keys %{$metaData->{Relationships}}) { | ||
# Try to load this relationship's relation. | ||
my $result = $self->_LoadRelation($directoryName, $relationshipName, $rebuild); | ||
# Accumulate the statistics. | ||
$retVal->Accumulate($result); | ||
} | ||
1219 | # Add the duration of the load to the statistical object. | # Add the duration of the load to the statistical object. |
1220 | $retVal->Add('duration', gettimeofday - $startTime); | $retVal->Add('duration', gettimeofday - $startTime); |
1221 | # Return the accumulated statistics. | # Return the accumulated statistics. |
1222 | return $retVal; | return $retVal; |
1223 | } | } |
1224 | ||
1225 | ||
1226 | =head3 GetTableNames | =head3 GetTableNames |
1227 | ||
1228 | C<< my @names = $erdb->GetTableNames; >> | C<< my @names = $erdb->GetTableNames; >> |
# | Line 783 | Line 1257 |
1257 | return sort keys %{$entityList}; | return sort keys %{$entityList}; |
1258 | } | } |
1259 | ||
1260 | =head3 Get | =head3 GetDataTypes |
1261 | ||
1262 | C<< my $query = $erdb->Get(\@objectNames, $filterClause, $param1, $param2, ..., $paramN); >> | C<< my %types = ERDB::GetDataTypes(); >> |
1263 | ||
1264 | This method returns a query object for entities of a specified type using a specified filter. | Return a table of ERDB data types. The table returned is a hash of hashes. |
1265 | The keys of the big hash are the datatypes. Each smaller hash has several | |
1266 | values used to manage the data. The most interesting is the SQL type (key | |
1267 | C<sqlType>) and the descriptive node (key C<notes>). | |
1268 | ||
1269 | Note that changing the values in the smaller hashes will seriously break | |
1270 | things, so this data should be treated as read-only. | |
1271 | ||
1272 | =cut | |
1273 | ||
1274 | sub GetDataTypes { | |
1275 | return %TypeTable; | |
1276 | } | |
1277 | ||
1278 | ||
1279 | =head3 IsEntity | |
1280 | ||
1281 | C<< my $flag = $erdb->IsEntity($entityName); >> | |
1282 | ||
1283 | Return TRUE if the parameter is an entity name, else FALSE. | |
1284 | ||
1285 | =over 4 | |
1286 | ||
1287 | =item entityName | |
1288 | ||
1289 | Object name to be tested. | |
1290 | ||
1291 | =item RETURN | |
1292 | ||
1293 | Returns TRUE if the specified string is an entity name, else FALSE. | |
1294 | ||
1295 | =back | |
1296 | ||
1297 | =cut | |
1298 | ||
1299 | sub IsEntity { | |
1300 | # Get the parameters. | |
1301 | my ($self, $entityName) = @_; | |
1302 | # Test to see if it's an entity. | |
1303 | return exists $self->{_metaData}->{Entities}->{$entityName}; | |
1304 | } | |
1305 | ||
1306 | =head3 Get | |
1307 | ||
1308 | C<< my $query = $erdb->Get(\@objectNames, $filterClause, \@params); >> | |
1309 | ||
1310 | This method returns a query object for entities of a specified type using a specified filter. | |
1311 | The filter is a standard WHERE/ORDER BY clause with question marks as parameter markers and each | The filter is a standard WHERE/ORDER BY clause with question marks as parameter markers and each |
1312 | field name represented in the form B<I<objectName>(I<fieldName>)>. For example, the | field name represented in the form B<I<objectName>(I<fieldName>)>. For example, the |
1313 | following call requests all B<Genome> objects for the genus specified in the variable | following call requests all B<Genome> objects for the genus specified in the variable |
1314 | $genus. | $genus. |
1315 | ||
1316 | C<< $query = $erdb->Get(['Genome'], "Genome(genus) = ?", $genus); >> | C<< $query = $erdb->Get(['Genome'], "Genome(genus) = ?", [$genus]); >> |
1317 | ||
1318 | The WHERE clause contains a single question mark, so there is a single additional | The WHERE clause contains a single question mark, so there is a single additional |
1319 | parameter representing the parameter value. It would also be possible to code | parameter representing the parameter value. It would also be possible to code |
# | Line 810 | Line 1330 |
1330 | It is possible to specify multiple entity and relationship names in order to retrieve more than | It is possible to specify multiple entity and relationship names in order to retrieve more than |
1331 | one object's data at the same time, which allows highly complex joined queries. For example, | one object's data at the same time, which allows highly complex joined queries. For example, |
1332 | ||
1333 | C<< $query = $erdb->Get(['Genome', 'ComesFrom', 'Source'], "Genome(genus) = ?", $genus); >> | C<< $query = $erdb->Get(['Genome', 'ComesFrom', 'Source'], "Genome(genus) = ?", [$genus]); >> |
1334 | ||
1335 | If multiple names are specified, then the query processor will automatically determine a | If multiple names are specified, then the query processor will automatically determine a |
1336 | join path between the entities and relationships. The algorithm used is very simplistic. | join path between the entities and relationships. The algorithm used is very simplistic. |
1337 | In particular, you can't specify any entity or relationship more than once, and if a | In particular, if a relationship is recursive, the path is determined by the order in which |
1338 | relationship is recursive, the path is determined by the order in which the entity | the entity and the relationship appear. For example, consider a recursive relationship |
1339 | and the relationship appear. For example, consider a recursive relationship B<IsParentOf> | B<IsParentOf> which relates B<People> objects to other B<People> objects. If the join path is |
which relates B<People> objects to other B<People> objects. If the join path is | ||
1340 | coded as C<['People', 'IsParentOf']>, then the people returned will be parents. If, however, | coded as C<['People', 'IsParentOf']>, then the people returned will be parents. If, however, |
1341 | the join path is C<['IsParentOf', 'People']>, then the people returned will be children. | the join path is C<['IsParentOf', 'People']>, then the people returned will be children. |
1342 | ||
1343 | If an entity or relationship is mentioned twice, the name for the second occurrence will | |
1344 | be suffixed with C<2>, the third occurrence will be suffixed with C<3>, and so forth. So, | |
1345 | for example, if we have C<['Feature', 'HasContig', 'Contig', 'HasContig']>, then the | |
1346 | B<to-link> field of the first B<HasContig> is specified as C<HasContig(to-link)>, while | |
1347 | the B<to-link> field of the second B<HasContig> is specified as C<HasContig2(to-link)>. | |
1348 | ||
1349 | =over 4 | =over 4 |
1350 | ||
1351 | =item objectNames | =item objectNames |
# | Line 843 | Line 1368 |
1368 | ||
1369 | C<< "Genome(genus) = ? ORDER BY Genome(species)" >> | C<< "Genome(genus) = ? ORDER BY Genome(species)" >> |
1370 | ||
1371 | Note that the case is important. Only an uppercase "ORDER BY" with a single space will | |
1372 | be processed. The idea is to make it less likely to find the verb by accident. | |
1373 | ||
1374 | The rules for field references in a sort order are the same as those for field references in the | The rules for field references in a sort order are the same as those for field references in the |
1375 | filter clause in general; however, odd things may happen if a sort field is from a secondary | filter clause in general; however, odd things may happen if a sort field is from a secondary |
1376 | relation. | relation. |
1377 | ||
1378 | =item param1, param2, ..., paramN | Finally, you can limit the number of rows returned by adding a LIMIT clause. The LIMIT must |
1379 | be the last thing in the filter clause, and it contains only the word "LIMIT" followed by | |
1380 | a positive number. So, for example | |
1381 | ||
1382 | C<< "Genome(genus) = ? ORDER BY Genome(species) LIMIT 10" >> | |
1383 | ||
1384 | will only return the first ten genomes for the specified genus. The ORDER BY clause is not | |
1385 | required. For example, to just get the first 10 genomes in the B<Genome> table, you could | |
1386 | use | |
1387 | ||
1388 | Parameter values to be substituted into the filter clause. | C<< "LIMIT 10" >> |
1389 | ||
1390 | =item params | |
1391 | ||
1392 | Reference to a list of parameter values to be substituted into the filter clause. | |
1393 | ||
1394 | =item RETURN | =item RETURN |
1395 | ||
# | Line 861 | Line 1401 |
1401 | ||
1402 | sub Get { | sub Get { |
1403 | # Get the parameters. | # Get the parameters. |
1404 | my ($self, $objectNames, $filterClause, @params) = @_; | my ($self, $objectNames, $filterClause, $params) = @_; |
1405 | # Construct the SELECT statement. The general pattern is | # Process the SQL stuff. |
1406 | # | my ($suffix, $mappedNameListRef, $mappedNameHashRef) = |
1407 | # SELECT name1.*, name2.*, ... nameN.* FROM name1, name2, ... nameN | $self->_SetupSQL($objectNames, $filterClause); |
1408 | # | # Create the query. |
1409 | my $dbh = $self->{_dbh}; | my $command = "SELECT DISTINCT " . join(".*, ", @{$mappedNameListRef}) . |
1410 | my $command = "SELECT DISTINCT " . join('.*, ', @{$objectNames}) . ".* FROM " . | ".* $suffix"; |
1411 | join(', ', @{$objectNames}); | my $sth = $self->_GetStatementHandle($command, $params); |
1412 | # Check for a filter clause. | # Now we create the relation map, which enables DBQuery to determine the order, name |
1413 | if ($filterClause) { | # and mapped name for each object in the query. |
1414 | # Here we have one, so we convert its field names and add it to the query. First, | my @relationMap = (); |
1415 | # We create a copy of the filter string we can work with. | for my $mappedName (@{$mappedNameListRef}) { |
1416 | my $filterString = $filterClause; | push @relationMap, [$mappedName, $mappedNameHashRef->{$mappedName}]; |
# Next, we sort the object names by length. This helps protect us from finding | ||
# object names inside other object names when we're doing our search and replace. | ||
my @sortedNames = sort { length($b) - length($a) } @{$objectNames}; | ||
# We will also keep a list of conditions to add to the WHERE clause in order to link | ||
# entities and relationships as well as primary relations to secondary ones. | ||
my @joinWhere = (); | ||
# The final preparatory step is to create a hash table of relation names. The | ||
# table begins with the relation names already in the SELECT command. | ||
my %fromNames = (); | ||
for my $objectName (@sortedNames) { | ||
$fromNames{$objectName} = 1; | ||
} | ||
# We are ready to begin. We loop through the object names, replacing each | ||
# object name's field references by the corresponding SQL field reference. | ||
# Along the way, if we find a secondary relation, we will need to add it | ||
# to the FROM clause. | ||
for my $objectName (@sortedNames) { | ||
# Get the length of the object name plus 2. This is the value we add to the | ||
# size of the field name to determine the size of the field reference as a | ||
# whole. | ||
my $nameLength = 2 + length $objectName; | ||
# Get the object's field list. | ||
my $fieldList = $self->_GetFieldTable($objectName); | ||
# Find the field references for this object. | ||
while ($filterString =~ m/$objectName\(([^)]*)\)/g) { | ||
# At this point, $1 contains the field name, and the current position | ||
# is set immediately after the final parenthesis. We pull out the name of | ||
# the field and the position and length of the field reference as a whole. | ||
my $fieldName = $1; | ||
my $len = $nameLength + length $fieldName; | ||
my $pos = pos($filterString) - $len; | ||
# Insure the field exists. | ||
if (!exists $fieldList->{$fieldName}) { | ||
Confess("Field $fieldName not found for object $objectName."); | ||
} else { | ||
# Get the field's relation. | ||
my $relationName = $fieldList->{$fieldName}->{relation}; | ||
# Insure the relation is in the FROM clause. | ||
if (!exists $fromNames{$relationName}) { | ||
# Add the relation to the FROM clause. | ||
$command .= ", $relationName"; | ||
# Create its join sub-clause. | ||
push @joinWhere, "$objectName.id = $relationName.id"; | ||
# Denote we have it available for future fields. | ||
$fromNames{$relationName} = 1; | ||
} | ||
# Form an SQL field reference from the relation name and the field name. | ||
my $sqlReference = "$relationName." . _FixName($fieldName); | ||
# Put it into the filter string in place of the old value. | ||
substr($filterString, $pos, $len) = $sqlReference; | ||
# Reposition the search. | ||
pos $filterString = $pos + length $sqlReference; | ||
} | ||
} | ||
} | ||
# The next step is to join the objects together. We only need to do this if there | ||
# is more than one object in the object list. We start with the first object and | ||
# run through the objects after it. Note also that we make a safety copy of the | ||
# list before running through it. | ||
my @objectList = @{$objectNames}; | ||
my $lastObject = shift @objectList; | ||
# Get the join table. | ||
my $joinTable = $self->{_metaData}->{Joins}; | ||
# Loop through the object list. | ||
for my $thisObject (@objectList) { | ||
# Look for a join. | ||
my $joinKey = "$lastObject/$thisObject"; | ||
if (!exists $joinTable->{$joinKey}) { | ||
# Here there's no join, so we throw an error. | ||
Confess("No join exists to connect from $lastObject to $thisObject."); | ||
} else { | ||
# Get the join clause and add it to the WHERE list. | ||
push @joinWhere, $joinTable->{$joinKey}; | ||
# Save this object as the last object for the next iteration. | ||
$lastObject = $thisObject; | ||
} | ||
} | ||
# Now we need to handle the whole ORDER BY thing. We'll put the order by clause | ||
# in the following variable. | ||
my $orderClause = ""; | ||
# Locate the ORDER BY verb (if any). | ||
if ($filterString =~ m/^(.*)ORDER BY/g) { | ||
# Here we have an ORDER BY verb. Split it off of the filter string. | ||
my $pos = pos $filterString; | ||
$orderClause = substr($filterString, $pos); | ||
$filterString = $1; | ||
} | ||
# Add the filter and the join clauses (if any) to the SELECT command. | ||
if ($filterString) { | ||
push @joinWhere, "($filterString)"; | ||
} | ||
if (@joinWhere) { | ||
$command .= " WHERE " . join(' AND ', @joinWhere); | ||
} | ||
# Add the sort clause (if any) to the SELECT command. | ||
if ($orderClause) { | ||
$command .= " ORDER BY $orderClause"; | ||
} | ||
1417 | } | } |
Trace("SQL query: $command") if T(3); | ||
Trace("PARMS: '" . (join "', '", @params) . "'") if (T(4) && (@params > 0)); | ||
my $sth = $dbh->prepare_command($command); | ||
# Execute it with the parameters bound in. | ||
$sth->execute(@params) || Confess("SELECT error" . $sth->errstr()); | ||
1418 | # Return the statement object. | # Return the statement object. |
1419 | my $retVal = DBQuery::_new($self, $sth, @{$objectNames}); | my $retVal = DBQuery::_new($self, $sth, \@relationMap); |
1420 | return $retVal; | return $retVal; |
1421 | } | } |
1422 | ||
=head3 GetList | ||
1423 | ||
C<< my @dbObjects = $erdb->GetList(\@objectNames, $filterClause, $param1, $param2, ..., $paramN); >> | ||
1424 | ||
1425 | Return a list of object descriptors for the specified objects as determined by the | =head3 Search |
specified filter clause. | ||
1426 | ||
1427 | This method is essentially the same as L</Get> except it returns a list of objects rather | C<< my $query = $erdb->Search($searchExpression, $idx, \@objectNames, $filterClause, \@params); >> |
1428 | than a query object that can be used to get the results one record at a time. | |
1429 | Perform a full text search with filtering. The search will be against a specified object | |
1430 | in the object name list. That object will get an extra field containing the search | |
1431 | relevance. Note that except for the search expression, the parameters of this method are | |
1432 | the same as those for L</Get> and follow the same rules. | |
1433 | ||
1434 | =over 4 | =over 4 |
1435 | ||
1436 | =item searchExpression | |
1437 | ||
1438 | Boolean search expression for the text fields of the target object. The default mode for | |
1439 | a Boolean search expression is OR, but we want the default to be AND, so we will | |
1440 | add a C<+> operator to each word with no other operator before it. | |
1441 | ||
1442 | =item idx | |
1443 | ||
1444 | Index in the I<$objectNames> list of the table to be searched in full-text mode. | |
1445 | ||
1446 | =item objectNames | =item objectNames |
1447 | ||
1448 | List containing the names of the entity and relationship objects to be retrieved. | List containing the names of the entity and relationship objects to be retrieved. |
# | Line 1009 | Line 1457 |
1457 | or secondary entity relations; however, all of the entities and relationships involved must | or secondary entity relations; however, all of the entities and relationships involved must |
1458 | be included in the list of object names. | be included in the list of object names. |
1459 | ||
1460 | The filter clause can also specify a sort order. To do this, simply follow the filter string | =item params |
with an ORDER BY clause. For example, the following filter string gets all genomes for a | ||
particular genus and sorts them by species name. | ||
C<< "Genome(genus) = ? ORDER BY Genome(species)" >> | ||
The rules for field references in a sort order are the same as those for field references in the | ||
filter clause in general; however, odd things may happen if a sort field is from a secondary | ||
relation. | ||
=item param1, param2, ..., paramN | ||
1461 | ||
1462 | Parameter values to be substituted into the filter clause. | Reference to a list of parameter values to be substituted into the filter clause. |
1463 | ||
1464 | =item RETURN | =item RETURN |
1465 | ||
1466 | Returns a list of B<DBObject>s that satisfy the query conditions. | Returns a query object for the specified search. |
1467 | ||
1468 | =back | =back |
1469 | ||
1470 | =cut | =cut |
1471 | #: Return Type @% | |
1472 | sub GetList { | sub Search { |
1473 | # Get the parameters. | # Get the parameters. |
1474 | my ($self, $objectNames, $filterClause, @params) = @_; | my ($self, $searchExpression, $idx, $objectNames, $filterClause, $params) = @_; |
1475 | # Declare the return variable. | # Declare the return variable. |
1476 | my @retVal = (); | my $retVal; |
1477 | # Perform the query. | # Create a safety copy of the parameter list. Note we have to be careful to insure |
1478 | my $query = $self->Get($objectNames, $filterClause, @params); | # a parameter list exists before we copy it. |
1479 | # Loop through the results. | my @myParams = (); |
1480 | while (my $object = $query->Fetch) { | if (defined $params) { |
1481 | push @retVal, $object; | @myParams = @{$params}; |
1482 | } | |
1483 | # Get the first object's structure so we have access to the searchable fields. | |
1484 | my $object1Name = $objectNames->[$idx]; | |
1485 | my $object1Structure = $self->_GetStructure($object1Name); | |
1486 | # Get the field list. | |
1487 | if (! exists $object1Structure->{searchFields}) { | |
1488 | Confess("No searchable index for $object1Name."); | |
1489 | } else { | |
1490 | # Get the field list. | |
1491 | my @fields = @{$object1Structure->{searchFields}}; | |
1492 | # Clean the search expression. | |
1493 | my $actualKeywords = $self->CleanKeywords($searchExpression); | |
1494 | # Prefix a "+" to each uncontrolled word. This converts the default | |
1495 | # search mode from OR to AND. | |
1496 | $actualKeywords =~ s/(^|\s)(\w|")/$1\+$2/g; | |
1497 | Trace("Actual keywords for search are\n$actualKeywords") if T(3); | |
1498 | # We need two match expressions, one for the filter clause and one in the | |
1499 | # query itself. Both will use a parameter mark, so we need to push the | |
1500 | # search expression onto the front of the parameter list twice. | |
1501 | unshift @myParams, $actualKeywords, $actualKeywords; | |
1502 | # Build the match expression. | |
1503 | my @matchFilterFields = map { "$object1Name." . _FixName($_) } @fields; | |
1504 | my $matchClause = "MATCH (" . join(", ", @matchFilterFields) . ") AGAINST (? IN BOOLEAN MODE)"; | |
1505 | # Process the SQL stuff. | |
1506 | my ($suffix, $mappedNameListRef, $mappedNameHashRef) = | |
1507 | $self->_SetupSQL($objectNames, $filterClause, $matchClause); | |
1508 | # Create the query. Note that the match clause is inserted at the front of | |
1509 | # the select fields. | |
1510 | my $command = "SELECT DISTINCT $matchClause, " . join(".*, ", @{$mappedNameListRef}) . | |
1511 | ".* $suffix"; | |
1512 | my $sth = $self->_GetStatementHandle($command, \@myParams); | |
1513 | # Now we create the relation map, which enables DBQuery to determine the order, name | |
1514 | # and mapped name for each object in the query. | |
1515 | my @relationMap = _RelationMap($mappedNameHashRef, $mappedNameListRef); | |
1516 | # Return the statement object. | |
1517 | $retVal = DBQuery::_new($self, $sth, \@relationMap, $object1Name); | |
1518 | } | } |
1519 | # Return the result. | return $retVal; |
return @retVal; | ||
1520 | } | } |
1521 | ||
1522 | =head3 ComputeObjectSentence | =head3 GetFlat |
1523 | ||
1524 | C<< my $sentence = $erdb->ComputeObjectSentence($objectName); >> | C<< my @list = $erdb->GetFlat(\@objectNames, $filterClause, \@parameterList, $field); >> |
1525 | ||
1526 | Check an object name, and if it is a relationship convert it to a relationship sentence. | This is a variation of L</GetAll> that asks for only a single field per record and |
1527 | returns a single flattened list. | |
1528 | ||
1529 | =over 4 | =over 4 |
1530 | ||
1531 | =item objectName | =item objectNames |
1532 | ||
1533 | Name of the entity or relationship. | List containing the names of the entity and relationship objects to be retrieved. |
1534 | ||
1535 | =item filterClause | |
1536 | ||
1537 | WHERE/ORDER BY clause (without the WHERE) to be used to filter and sort the query. The WHERE clause can | |
1538 | be parameterized with parameter markers (C<?>). Each field used must be specified in the standard form | |
1539 | B<I<objectName>(I<fieldName>)>. Any parameters specified in the filter clause should be added to the | |
1540 | parameter list as additional parameters. The fields in a filter clause can come from primary | |
1541 | entity relations, relationship relations, or secondary entity relations; however, all of the | |
1542 | entities and relationships involved must be included in the list of object names. | |
1543 | ||
1544 | =item parameterList | |
1545 | ||
1546 | List of the parameters to be substituted in for the parameters marks in the filter clause. | |
1547 | ||
1548 | =item field | |
1549 | ||
1550 | Name of the field to be used to get the elements of the list returned. | |
1551 | ||
1552 | =item RETURN | =item RETURN |
1553 | ||
1554 | Returns a string containing the entity name or a relationship sentence. | Returns a list of values. |
1555 | ||
1556 | =back | =back |
1557 | ||
1558 | =cut | =cut |
1559 | #: Return Type @; | |
1560 | sub ComputeObjectSentence { | sub GetFlat { |
1561 | # Get the parameters. | # Get the parameters. |
1562 | my ($self, $objectName) = @_; | my ($self, $objectNames, $filterClause, $parameterList, $field) = @_; |
1563 | # Set the default return value. | # Construct the query. |
1564 | my $retVal = $objectName; | my $query = $self->Get($objectNames, $filterClause, $parameterList); |
1565 | # Look for the object as a relationship. | # Create the result list. |
1566 | my $relTable = $self->{_metaData}->{Relationships}; | my @retVal = (); |
1567 | if (exists $relTable->{$objectName}) { | # Loop through the records, adding the field values found to the result list. |
1568 | # Get the relationship sentence. | while (my $row = $query->Fetch()) { |
1569 | $retVal = _ComputeRelationshipSentence($objectName, $relTable->{$objectName}); | push @retVal, $row->Value($field); |
1570 | } | } |
1571 | # Return the result. | # Return the list created. |
1572 | return $retVal; | return @retVal; |
1573 | } | } |
1574 | ||
1575 | =head3 DumpRelations | =head3 SpecialFields |
1576 | ||
1577 | C<< $erdb->DumpRelations($outputDirectory); >> | C<< my %specials = $erdb->SpecialFields($entityName); >> |
1578 | ||
1579 | Write the contents of all the relations to tab-delimited files in the specified directory. | Return a hash mapping special fields in the specified entity to the value of their |
1580 | Each file will have the same name as the relation dumped, with an extension of DTX. | C<special> attribute. This enables the subclass to get access to the special field |
1581 | attributes without needed to plumb the internal ERDB data structures. | |
1582 | ||
1583 | =over 4 | =over 4 |
1584 | ||
1585 | =item outputDirectory | =item entityName |
1586 | ||
1587 | Name of the directory into which the relation files should be dumped. | Name of the entity whose special fields are desired. |
1588 | ||
1589 | =item RETURN | |
1590 | ||
1591 | Returns a hash. The keys of the hash are the special field names, and the values | |
1592 | are the values from each special field's C<special> attribute. | |
1593 | ||
1594 | =back | =back |
1595 | ||
1596 | =cut | =cut |
1597 | ||
1598 | sub DumpRelations { | sub SpecialFields { |
1599 | # Get the parameters. | # Get the parameters. |
1600 | my ($self, $outputDirectory) = @_; | my ($self, $entityName) = @_; |
1601 | # Now we need to run through all the relations. First, we loop through the entities. | # Declare the return variable. |
1602 | my $metaData = $self->{_metaData}; | my %retVal = (); |
1603 | my $entities = $metaData->{Entities}; | # Find the entity's data structure. |
1604 | for my $entityName (keys %{$entities}) { | my $entityData = $self->{_metaData}->{Entities}->{$entityName}; |
1605 | my $entityStructure = $entities->{$entityName}; | # Loop through its fields, adding each special field to the return hash. |
1606 | # Get the entity's relations. | my $fieldHash = $entityData->{Fields}; |
1607 | my $relationList = $entityStructure->{Relations}; | for my $fieldName (keys %{$fieldHash}) { |
1608 | # Loop through the relations, dumping them. | my $fieldData = $fieldHash->{$fieldName}; |
1609 | for my $relationName (keys %{$relationList}) { | if (exists $fieldData->{special}) { |
1610 | my $relation = $relationList->{$relationName}; | $retVal{$fieldName} = $fieldData->{special}; |
$self->_DumpRelation($outputDirectory, $relationName, $relation); | ||
} | ||
1611 | } | } |
# Next, we loop through the relationships. | ||
my $relationships = $metaData->{Relationships}; | ||
for my $relationshipName (keys %{$relationships}) { | ||
my $relationshipStructure = $relationships->{$relationshipName}; | ||
# Dump this relationship's relation. | ||
$self->_DumpRelation($outputDirectory, $relationshipName, $relationshipStructure->{Relations}->{$relationshipName}); | ||
1612 | } | } |
1613 | # Return the result. | |
1614 | return %retVal; | |
1615 | } | } |
1616 | ||
1617 | =head3 InsertObject | =head3 Delete |
1618 | ||
1619 | C<< my $ok = $erdb->InsertObject($objectType, \%fieldHash); >> | C<< my $stats = $erdb->Delete($entityName, $objectID, %options); >> |
1620 | ||
1621 | Insert an object into the database. The object is defined by a type name and then a hash | Delete an entity instance from the database. The instance is deleted along with all entity and |
1622 | of field names to values. Field values in the primary relation are represented by scalars. | relationship instances dependent on it. The definition of I<dependence> is recursive. |
(Note that for relationships, the primary relation is the B<only> relation.) | ||
Field values for the other relations comprising the entity are always list references. For | ||
example, the following line inserts an inactive PEG feature named C<fig|188.1.peg.1> with aliases | ||
C<ZP_00210270.1> and C<gi|46206278>. | ||
1623 | ||
1624 | C<< $erdb->InsertObject('Feature', { id => 'fig|188.1.peg.1', active => 0, feature-type => 'peg', alias => ['ZP_00210270.1', 'gi|46206278']}); >> | An object is always dependent on itself. An object is dependent if it is a 1-to-many or many-to-many |
1625 | relationship connected to a dependent entity or if it is the "to" entity connected to a 1-to-many | |
1626 | dependent relationship. | |
1627 | ||
1628 | The next statement inserts a C<HasProperty> relationship between feature C<fig|158879.1.peg.1> and | =over 4 |
property C<4> with an evidence URL of C<http://seedu.uchicago.edu/query.cgi?article_id=142>. | ||
1629 | ||
1630 | C<< $erdb->InsertObject('HasProperty', { 'from-link' => 'fig|158879.1.peg.1', 'to-link' => 4, evidence = 'http://seedu.uchicago.edu/query.cgi?article_id=142'}); >> | =item entityName |
1631 | ||
1632 | =over 4 | Name of the entity type for the instance being deleted. |
1633 | ||
1634 | =item newObjectType | =item objectID |
1635 | ||
1636 | Type name of the object to insert. | ID of the entity instance to be deleted. If the ID contains a wild card character (C<%>), |
1637 | then it is presumed to by a LIKE pattern. | |
1638 | ||
1639 | =item fieldHash | =item options |
1640 | ||
1641 | Hash of field names to values. | A hash detailing the options for this delete operation. |
1642 | ||
1643 | =item RETURN | =item RETURN |
1644 | ||
1645 | Returns 1 if successful, 0 if an error occurred. | Returns a statistics object indicating how many records of each particular table were |
1646 | deleted. | |
1647 | ||
1648 | =back | =back |
1649 | ||
1650 | =cut | The permissible options for this method are as follows. |
1651 | ||
1652 | sub InsertObject { | =over 4 |
1653 | ||
1654 | =item testMode | |
1655 | ||
1656 | If TRUE, then the delete statements will be traced, but no changes will be made to the database. | |
1657 | ||
1658 | =item keepRoot | |
1659 | ||
1660 | If TRUE, then the entity instances will not be deleted, only the dependent records. | |
1661 | ||
1662 | =back | |
1663 | ||
1664 | =cut | |
1665 | #: Return Type $%; | |
1666 | sub Delete { | |
1667 | # Get the parameters. | # Get the parameters. |
1668 | my ($self, $newObjectType, $fieldHash) = @_; | my ($self, $entityName, $objectID, %options) = @_; |
1669 | # Denote that so far we appear successful. | # Declare the return variable. |
1670 | my $retVal = 1; | my $retVal = Stats->new(); |
1671 | # Get the database handle. | # Get the DBKernel object. |
1672 | my $dbh = $self->{_dbh}; | my $db = $self->{_dbh}; |
1673 | # Get the relation list. | # We're going to generate all the paths branching out from the starting entity. One of |
1674 | my $relationTable = $self->_GetRelationTable($newObjectType); | # the things we have to be careful about is preventing loops. We'll use a hash to |
1675 | # Loop through the relations. We'll build insert statements for each one. If a relation is | # determine if we've hit a loop. |
1676 | # secondary, we may end up generating multiple insert statements. If an error occurs, we | my %alreadyFound = (); |
1677 | # stop the loop. | # These next lists will serve as our result stack. We start by pushing object lists onto |
1678 | my @relationList = keys %{$relationTable}; | # the stack, and then popping them off to do the deletes. This means the deletes will |
1679 | for (my $i = 0; $retVal && $i <= $#relationList; $i++) { | # start with the longer paths before getting to the shorter ones. That, in turn, makes |
1680 | my $relationName = $relationList[$i]; | # sure we don't delete records that might be needed to forge relationships back to the |
1681 | my $relationDefinition = $relationTable->{$relationName}; | # original item. We have two lists-- one for TO-relationships, and one for |
1682 | # Get the relation's fields. For each field we will collect a value in the corresponding | # FROM-relationships and entities. |
1683 | # position of the @valueList array. If one of the fields is missing, we will add it to the | my @fromPathList = (); |
1684 | # @missing list. | my @toPathList = (); |
1685 | my @fieldList = @{$relationDefinition->{Fields}}; | # This final list is used to remember what work still needs to be done. We push paths |
1686 | my @fieldNameList = (); | # onto the list, then pop them off to extend the paths. We prime it with the starting |
1687 | my @valueList = (); | # point. Note that we will work hard to insure that the last item on a path in the |
1688 | my @missing = (); | # to-do list is always an entity. |
1689 | my $recordCount = 1; | my @todoList = ([$entityName]); |
1690 | for my $fieldDescriptor (@fieldList) { | while (@todoList) { |
1691 | # Get the field name and save it. Note we need to fix it up so the hyphens | # Get the current path. |
1692 | # are converted to underscores. | my $current = pop @todoList; |
1693 | my $fieldName = $fieldDescriptor->{name}; | # Copy it into a list. |
1694 | push @fieldNameList, _FixName($fieldName); | my @stackedPath = @{$current}; |
1695 | # Look for the named field in the incoming structure. Note that we are looking | # Pull off the last item on the path. It will always be an entity. |
1696 | # for the real field name, not the fixed-up one! | my $myEntityName = pop @stackedPath; |
1697 | if (exists $fieldHash->{$fieldName}) { | # Add it to the alreadyFound list. |
1698 | # Here we found the field. Stash it in the value list. | $alreadyFound{$myEntityName} = 1; |
1699 | my $value = $fieldHash->{$fieldName}; | # Figure out if we need to delete this entity. |
1700 | push @valueList, $value; | if ($myEntityName ne $entityName || ! $options{keepRoot}) { |
1701 | # If the value is a list, we may need to increment the record count. | # Get the entity data. |
1702 | if (ref $value eq "ARRAY") { | my $entityData = $self->_GetStructure($myEntityName); |
1703 | my $thisCount = @{$value}; | # Loop through the entity's relations. A DELETE command will be needed for each of them. |
1704 | if ($recordCount == 1) { | my $relations = $entityData->{Relations}; |
1705 | # Here we have our first list, so we save its count. | for my $relation (keys %{$relations}) { |
1706 | $recordCount = $thisCount; | my @augmentedList = (@stackedPath, $relation); |
1707 | } elsif ($recordCount != $thisCount) { | push @fromPathList, \@augmentedList; |
# Here we have a second list, so its length has to match the | ||
# previous lists. | ||
Trace("Field $value in new $newObjectType object has an invalid list length $thisCount. Expected $recordCount.") if T(0); | ||
$retVal = 0; | ||
1708 | } | } |
1709 | } | } |
1710 | # Now we need to look for relationships connected to this entity. | |
1711 | my $relationshipList = $self->{_metaData}->{Relationships}; | |
1712 | for my $relationshipName (keys %{$relationshipList}) { | |
1713 | my $relationship = $relationshipList->{$relationshipName}; | |
1714 | # Check the FROM field. We're only interested if it's us. | |
1715 | if ($relationship->{from} eq $myEntityName) { | |
1716 | # Add the path to this relationship. | |
1717 | my @augmentedList = (@stackedPath, $myEntityName, $relationshipName); | |
1718 | push @fromPathList, \@augmentedList; | |
1719 | # Check the arity. If it's MM we're done. If it's 1M | |
1720 | # and the target hasn't been seen yet, we want to | |
1721 | # stack the entity for future processing. | |
1722 | if ($relationship->{arity} eq '1M') { | |
1723 | my $toEntity = $relationship->{to}; | |
1724 | if (! exists $alreadyFound{$toEntity}) { | |
1725 | # Here we have a new entity that's dependent on | |
1726 | # the current entity, so we need to stack it. | |
1727 | my @stackList = (@augmentedList, $toEntity); | |
1728 | push @fromPathList, \@stackList; | |
1729 | } else { | } else { |
1730 | # Here the field is not present. Flag it as missing. | Trace("$toEntity ignored because it occurred previously.") if T(4); |
push @missing, $fieldName; | ||
1731 | } | } |
1732 | } | } |
# If we are the primary relation, add the new-record flag. | ||
if ($relationName eq $newObjectType) { | ||
push @valueList, 1; | ||
push @fieldNameList, "new_record"; | ||
1733 | } | } |
1734 | # Only proceed if there are no missing fields. | # Now check the TO field. In this case only the relationship needs |
1735 | if (@missing > 0) { | # deletion. |
1736 | Trace("Relation $relationName for $newObjectType skipped due to missing fields: " . | if ($relationship->{to} eq $myEntityName) { |
1737 | join(' ', @missing)) if T(1); | my @augmentedList = (@stackedPath, $myEntityName, $relationshipName); |
1738 | } else { | push @toPathList, \@augmentedList; |
# Build the INSERT statement. | ||
my $statement = "INSERT INTO $relationName (" . join (', ', @fieldNameList) . | ||
") VALUES ("; | ||
# Create a marker list of the proper size and put it in the statement. | ||
my @markers = (); | ||
while (@markers < @fieldNameList) { push @markers, '?'; } | ||
$statement .= join(', ', @markers) . ")"; | ||
# We have the insert statement, so prepare it. | ||
my $sth = $dbh->prepare_command($statement); | ||
Trace("Insert statement prepared: $statement") if T(3); | ||
# Now we loop through the values. If a value is scalar, we use it unmodified. If it's | ||
# a list, we use the current element. The values are stored in the @parameterList array. | ||
my $done = 0; | ||
for (my $i = 0; $i < $recordCount; $i++) { | ||
# Clear the parameter list array. | ||
my @parameterList = (); | ||
# Loop through the values. | ||
for my $value (@valueList) { | ||
# Check to see if this is a scalar value. | ||
if (ref $value eq "ARRAY") { | ||
# Here we have a list value. Pull the current entry. | ||
push @parameterList, $value->[$i]; | ||
} else { | ||
# Here we have a scalar value. Use it unmodified. | ||
push @parameterList, $value; | ||
1739 | } | } |
1740 | } | } |
# Execute the INSERT statement with the specified parameter list. | ||
$retVal = $sth->execute(@parameterList); | ||
if (!$retVal) { | ||
my $errorString = $sth->errstr(); | ||
Trace("Insert error: $errorString.") if T(0); | ||
1741 | } | } |
1742 | # Create the first qualifier for the WHERE clause. This selects the | |
1743 | # keys of the primary entity records to be deleted. When we're deleting | |
1744 | # from a dependent table, we construct a join path from the first qualifier | |
1745 | # to the table containing the dependent records to delete. | |
1746 | my $qualifier = ($objectID =~ /%/ ? "LIKE ?" : "= ?"); | |
1747 | # We need to make two passes. The first is through the to-list, and | |
1748 | # the second through the from-list. The from-list is second because | |
1749 | # the to-list may need to pass through some of the entities the | |
1750 | # from-list would delete. | |
1751 | my %stackList = ( from_link => \@fromPathList, to_link => \@toPathList ); | |
1752 | # Now it's time to do the deletes. We do it in two passes. | |
1753 | for my $keyName ('to_link', 'from_link') { | |
1754 | # Get the list for this key. | |
1755 | my @pathList = @{$stackList{$keyName}}; | |
1756 | Trace(scalar(@pathList) . " entries in path list for $keyName.") if T(3); | |
1757 | # Loop through this list. | |
1758 | while (my $path = pop @pathList) { | |
1759 | # Get the table whose rows are to be deleted. | |
1760 | my @pathTables = @{$path}; | |
1761 | # Start the DELETE statement. We need to call DBKernel because the | |
1762 | # syntax of a DELETE-USING varies among DBMSs. | |
1763 | my $target = $pathTables[$#pathTables]; | |
1764 | my $stmt = $db->SetUsing(@pathTables); | |
1765 | # Now start the WHERE. The first thing is the ID field from the starting table. That | |
1766 | # starting table will either be the entity relation or one of the entity's | |
1767 | # sub-relations. | |
1768 | $stmt .= " WHERE $pathTables[0].id $qualifier"; | |
1769 | # Now we run through the remaining entities in the path, connecting them up. | |
1770 | for (my $i = 1; $i <= $#pathTables; $i += 2) { | |
1771 | # Connect the current relationship to the preceding entity. | |
1772 | my ($entity, $rel) = @pathTables[$i-1,$i]; | |
1773 | # The style of connection depends on the direction of the relationship. | |
1774 | $stmt .= " AND $entity.id = $rel.$keyName"; | |
1775 | if ($i + 1 <= $#pathTables) { | |
1776 | # Here there's a next entity, so connect that to the relationship's | |
1777 | # to-link. | |
1778 | my $entity2 = $pathTables[$i+1]; | |
1779 | $stmt .= " AND $rel.to_link = $entity2.id"; | |
1780 | } | |
1781 | } | |
1782 | # Now we have our desired DELETE statement. | |
1783 | if ($options{testMode}) { | |
1784 | # Here the user wants to trace without executing. | |
1785 | Trace($stmt) if T(0); | |
1786 | } else { | |
1787 | # Here we can delete. Note that the SQL method dies with a confession | |
1788 | # if an error occurs, so we just go ahead and do it. | |
1789 | Trace("Executing delete from $target using '$objectID'.") if T(3); | |
1790 | my $rv = $db->SQL($stmt, 0, $objectID); | |
1791 | # Accumulate the statistics for this delete. The only rows deleted | |
1792 | # are from the target table, so we use its name to record the | |
1793 | # statistic. | |
1794 | $retVal->Add($target, $rv); | |
1795 | } | } |
1796 | } | } |
1797 | } | } |
1798 | # Return the success indicator. | # Return the result. |
1799 | return $retVal; | return $retVal; |
1800 | } | } |
1801 | ||
1802 | =head3 LoadTable | =head3 Disconnect |
1803 | ||
1804 | C<< my %results = $erdb->LoadTable($fileName, $relationName, $truncateFlag); >> | C<< $erdb->Disconnect($relationshipName, $originEntityName, $originEntityID); >> |
1805 | ||
1806 | Load data from a tab-delimited file into a specified table, optionally re-creating the table | Disconnect an entity instance from all the objects to which it is related. This |
1807 | first. | will delete each relationship instance that connects to the specified entity. |
1808 | ||
1809 | =over 4 | =over 4 |
1810 | ||
1811 | =item fileName | =item relationshipName |
Name of the file from which the table data should be loaded. | ||
=item relationName | ||
1812 | ||
1813 | Name of the relation to be loaded. This is the same as the table name. | Name of the relationship whose instances are to be deleted. |
1814 | ||
1815 | =item truncateFlag | =item originEntityName |
1816 | ||
1817 | TRUE if the table should be dropped and re-created, else FALSE | Name of the entity that is to be disconnected. |
1818 | ||
1819 | =item RETURN | =item originEntityID |
1820 | ||
1821 | Returns a statistical object containing the number of records read and a list of | ID of the entity that is to be disconnected. |
the error messages. | ||
1822 | ||
1823 | =back | =back |
1824 | ||
1825 | =cut | =cut |
1826 | sub LoadTable { | |
1827 | sub Disconnect { | |
1828 | # Get the parameters. | # Get the parameters. |
1829 | my ($self, $fileName, $relationName, $truncateFlag) = @_; | my ($self, $relationshipName, $originEntityName, $originEntityID) = @_; |
1830 | # Create the statistical return object. | # Get the relationship descriptor. |
1831 | my $retVal = _GetLoadStats(); | my $structure = $self->_GetStructure($relationshipName); |
1832 | # Trace the fact of the load. | # Insure we have a relationship. |
1833 | Trace("Loading table $relationName from $fileName") if T(2); | if (! exists $structure->{from}) { |
1834 | Confess("$relationshipName is not a relationship in the database."); | |
1835 | } else { | |
1836 | # Get the database handle. | # Get the database handle. |
1837 | my $dbh = $self->{_dbh}; | my $dbh = $self->{_dbh}; |
1838 | # Get the relation data. | # We'll set this value to 1 if we find our entity. |
1839 | my $relation = $self->_FindRelation($relationName); | my $found = 0; |
1840 | # Check the truncation flag. | # Loop through the ends of the relationship. |
1841 | if ($truncateFlag) { | for my $dir ('from', 'to') { |
1842 | Trace("Creating table $relationName") if T(2); | if ($structure->{$dir} eq $originEntityName) { |
1843 | # Compute the row count estimate. We take the size of the load file, | # Delete all relationship instances on this side of the entity instance. |
1844 | # divide it by the estimated row size, and then multiply by 1.5 to | $dbh->SQL("DELETE FROM $relationshipName WHERE ${dir}_link = ?", 0, $originEntityID); |
1845 | # leave extra room. We postulate a minimum row count of 1000 to | $found = 1; |
# prevent problems with incoming empty load files. | ||
my $rowSize = $self->EstimateRowSize($relationName); | ||
my $fileSize = -s $fileName; | ||
my $estimate = FIG::max($fileSize * 1.5 / $rowSize, 1000); | ||
# Re-create the table without its index. | ||
$self->CreateTable($relationName, 0, $estimate); | ||
# If this is a pre-index DBMS, create the index here. | ||
if ($dbh->{_preIndex}) { | ||
eval { | ||
$self->CreateIndex($relationName); | ||
}; | ||
if ($@) { | ||
$retVal->AddMessage($@); | ||
} | ||
} | ||
1846 | } | } |
# Determine whether or not this is a primary relation. Primary relations have an extra | ||
# field indicating whether or not a given object is new or was loaded from the flat files. | ||
my $primary = $self->_IsPrimary($relationName); | ||
# Get the number of fields in this relation. | ||
my @fieldList = @{$relation->{Fields}}; | ||
my $fieldCount = @fieldList; | ||
# Start a database transaction. | ||
$dbh->begin_tran; | ||
# Open the relation file. We need to create a cleaned-up copy before loading. | ||
open TABLEIN, '<', $fileName; | ||
my $tempName = "$fileName.tbl"; | ||
open TABLEOUT, '>', $tempName; | ||
my $inputCount = 0; | ||
# Loop through the file. | ||
while (<TABLEIN>) { | ||
$inputCount++; | ||
# Chop off the new-line character. | ||
my $record = Tracer::Strip($_); | ||
# Only proceed if the record is non-blank. | ||
if ($record) { | ||
# Escape all the backslashes found in the line. | ||
$record =~ s/\\/\\\\/g; | ||
# Insure the number of fields is correct. | ||
my @fields = split /\t/, $record; | ||
while (@fields > $fieldCount) { | ||
my $extraField = $fields[$#fields]; | ||
delete $fields[$#fields]; | ||
if ($extraField) { | ||
Trace("Nonblank extra field value \"$extraField\" deleted from record $inputCount of $fileName.") if T(1); | ||
} | ||
} | ||
while (@fields < $fieldCount) { | ||
push @fields, ""; | ||
} | ||
# If this is a primary relation, add a 0 for the new-record flag (indicating that | ||
# this record is not new, but part of the original load). | ||
if ($primary) { | ||
push @fields, "0"; | ||
} | ||
# Write the record. | ||
$record = join "\t", @fields; | ||
print TABLEOUT "$record\n"; | ||
# Count the record written. | ||
my $count = $retVal->Add('records'); | ||
my $len = length $record; | ||
Trace("Record $count written with $len characters.") if T(4); | ||
} else { | ||
# Here we have a blank record. | ||
$retVal->Add('skipped'); | ||
} | ||
} | ||
# Close the files. | ||
close TABLEIN; | ||
close TABLEOUT; | ||
Trace("Temporary file $tempName created.") if T(2); | ||
# Load the table. | ||
my $rv; | ||
eval { | ||
$rv = $dbh->load_table(file => $tempName, tbl => $relationName); | ||
}; | ||
if (!defined $rv) { | ||
$retVal->AddMessage($@) if ($@); | ||
$retVal->AddMessage("Table load failed for $relationName using $tempName."); | ||
Trace("Table load failed for $relationName.") if T(1); | ||
} else { | ||
# Here we successfully loaded the table. Trace the number of records loaded. | ||
Trace("$retVal->{records} records read for $relationName.") if T(2); | ||
# If we're rebuilding, we need to create the table indexes. | ||
if ($truncateFlag && ! $dbh->{_preIndex}) { | ||
eval { | ||
$self->CreateIndex($relationName); | ||
}; | ||
if ($@) { | ||
$retVal->AddMessage($@); | ||
1847 | } | } |
1848 | # Insure we found the entity on at least one end. | |
1849 | if (! $found) { | |
1850 | Confess("Entity \"$originEntityName\" does not use $relationshipName."); | |
1851 | } | } |
# Analyze the table to help optimize tables. | ||
1852 | } | } |
# Commit the database changes. | ||
$dbh->commit_tran; | ||
$dbh->vacuum_it($relationName); | ||
# Delete the temporary file. | ||
unlink $tempName; | ||
# Return the statistics. | ||
return $retVal; | ||
1853 | } | } |
1854 | ||
1855 | =head3 GenerateEntity | =head3 DeleteRow |
1856 | ||
1857 | C<< my $fieldHash = $erdb->GenerateEntity($id, $type, \%values); >> | C<< $erdb->DeleteRow($relationshipName, $fromLink, $toLink, \%values); >> |
1858 | ||
1859 | Generate the data for a new entity instance. This method creates a field hash suitable for | Delete a row from a relationship. In most cases, only the from-link and to-link are |
1860 | passing as a parameter to L</InsertObject>. The ID is specified by the callr, but the rest | needed; however, for relationships with intersection data values can be specified |
1861 | of the fields are generated using information in the database schema. | for the other fields using a hash. |
Each data type has a default algorithm for generating random test data. This can be overridden | ||
by including a B<DataGen> element in the field. If this happens, the content of the element is | ||
executed as a PERL program in the context of this module. The element may make use of a C<$this> | ||
variable which contains the field hash as it has been built up to the current point. If any | ||
fields are dependent on other fields, the C<pass> attribute can be used to control the order | ||
in which the fields are generated. A field with a high data pass number will be generated after | ||
a field with a lower one. If any external values are needed, they should be passed in via the | ||
optional third parameter, which will be available to the data generation script under the name | ||
C<$value>. Several useful utility methods are provided for generating random values, including | ||
L</IntGen>, L</StringGen>, L</FloatGen>, and L</DateGen>. Note that dates are stored and generated | ||
in the form of a timestamp number rather than a string. | ||
1862 | ||
1863 | =over 4 | =over 4 |
1864 | ||
1865 | =item id | =item relationshipName |
1866 | ||
1867 | ID to assign to the new entity. | Name of the relationship from which the row is to be deleted. |
1868 | ||
1869 | =item type | =item fromLink |
1870 | ||
1871 | ID of the entity instance in the From direction. | |
1872 | ||
1873 | Type name for the new entity. | =item toLink |
1874 | ||
1875 | ID of the entity instance in the To direction. | |
1876 | ||
1877 | =item values | =item values |
1878 | ||
1879 | Hash containing additional values that might be needed by the data generation methods (optional). | Reference to a hash of other values to be used for filtering the delete. |
1880 | ||
1881 | =back | =back |
1882 | ||
1883 | =cut | =cut |
1884 | ||
1885 | sub GenerateEntity { | sub DeleteRow { |
1886 | # Get the parameters. | # Get the parameters. |
1887 | my ($self, $id, $type, $values) = @_; | my ($self, $relationshipName, $fromLink, $toLink, $values) = @_; |
1888 | # Create the return hash. | # Create a hash of all the filter information. |
1889 | my $this = { id => $id }; | my %filter = ('from-link' => $fromLink, 'to-link' => $toLink); |
1890 | # Get the metadata structure. | if (defined $values) { |
1891 | my $metadata = $self->{_metaData}; | for my $key (keys %{$values}) { |
1892 | # Get this entity's list of fields. | $filter{$key} = $values->{$key}; |
1893 | if (!exists $metadata->{Entities}->{$type}) { | } |
Confess("Unrecognized entity type $type in GenerateEntity."); | ||
} else { | ||
my $entity = $metadata->{Entities}->{$type}; | ||
my $fields = $entity->{Fields}; | ||
# Generate data from the fields. | ||
_GenerateFields($this, $fields, $type, $values); | ||
1894 | } | } |
1895 | # Return the hash created. | # Build an SQL statement out of the hash. |
1896 | return $this; | my @filters = (); |
1897 | my @parms = (); | |
1898 | for my $key (keys %filter) { | |
1899 | push @filters, _FixName($key) . " = ?"; | |
1900 | push @parms, $filter{$key}; | |
1901 | } | |
1902 | Trace("Parms for delete row are " . join(", ", map { "\"$_\"" } @parms) . ".") if T(SQL => 4); | |
1903 | my $command = "DELETE FROM $relationshipName WHERE " . | |
1904 | join(" AND ", @filters); | |
1905 | # Execute it. | |
1906 | my $dbh = $self->{_dbh}; | |
1907 | $dbh->SQL($command, undef, @parms); | |
1908 | } | } |
1909 | ||
1910 | =head3 GetEntity | =head3 SortNeeded |
1911 | ||
1912 | C<< my $entityObject = $erdb->GetEntity($entityType, $ID); >> | C<< my $parms = $erdb->SortNeeded($relationName); >> |
1913 | ||
1914 | Return an object describing the entity instance with a specified ID. | Return the pipe command for the sort that should be applied to the specified |
1915 | relation when creating the load file. | |
1916 | ||
1917 | =over 4 | For example, if the load file should be sorted ascending by the first |
1918 | field, this method would return | |
1919 | ||
1920 | =item entityType | sort -k1 -t"\t" |
1921 | ||
1922 | Entity type name. | If the first field is numeric, the method would return |
1923 | ||
1924 | =item ID | sort -k1n -t"\t" |
1925 | ||
1926 | ID of the desired entity. | Unfortunately, due to a bug in the C<sort> command, we cannot eliminate duplicate |
1927 | keys using a sort. | |
1928 | ||
1929 | =item RETURN | =over 4 |
1930 | ||
1931 | Returns a B<DBObject> representing the desired entity instance, or an undefined value if no | =item relationName |
1932 | instance is found with the specified key. | |
1933 | Name of the relation to be examined. | |
1934 | ||
1935 | =item | |
1936 | ||
1937 | Returns the sort command to use for sorting the relation, suitable for piping. | |
1938 | ||
1939 | =back | =back |
1940 | ||
1941 | =cut | =cut |
1942 | #: Return Type $; | |
1943 | sub GetEntity { | sub SortNeeded { |
1944 | # Get the parameters. | # Get the parameters. |
1945 | my ($self, $entityType, $ID) = @_; | my ($self, $relationName) = @_; |
1946 | # Create a query. | # Declare a descriptor to hold the names of the key fields. |
1947 | my $query = $self->Get([$entityType], "$entityType(id) = ?", $ID); | my @keyNames = (); |
1948 | # Get the first (and only) object. | # Get the relation structure. |
1949 | my $retVal = $query->Fetch(); | my $relationData = $self->_FindRelation($relationName); |
1950 | # Find out if the relation is a primary entity relation, | |
1951 | # a relationship relation, or a secondary entity relation. | |
1952 | my $entityTable = $self->{_metaData}->{Entities}; | |
1953 | my $relationshipTable = $self->{_metaData}->{Relationships}; | |
1954 | if (exists $entityTable->{$relationName}) { | |
1955 | # Here we have a primary entity relation. | |
1956 | push @keyNames, "id"; | |
1957 | } elsif (exists $relationshipTable->{$relationName}) { | |
1958 | # Here we have a relationship. We sort using the FROM index. | |
1959 | my $relationshipData = $relationshipTable->{$relationName}; | |
1960 | my $index = $relationData->{Indexes}->{idxFrom}; | |
1961 | push @keyNames, @{$index->{IndexFields}}; | |
1962 | } else { | |
1963 | # Here we have a secondary entity relation, so we have a sort on the ID field. | |
1964 | push @keyNames, "id"; | |
1965 | } | |
1966 | # Now we parse the key names into sort parameters. First, we prime the return | |
1967 | # string. | |
1968 | my $retVal = "sort -t\"\t\" "; | |
1969 | # Get the relation's field list. | |
1970 | my @fields = @{$relationData->{Fields}}; | |
1971 | # Loop through the keys. | |
1972 | for my $keyData (@keyNames) { | |
1973 | # Get the key and the ordering. | |
1974 | my ($keyName, $ordering); | |
1975 | if ($keyData =~ /^([^ ]+) DESC/) { | |
1976 | ($keyName, $ordering) = ($1, "descending"); | |
1977 | } else { | |
1978 | ($keyName, $ordering) = ($keyData, "ascending"); | |
1979 | } | |
1980 | # Find the key's position and type. | |
1981 | my $fieldSpec; | |
1982 | for (my $i = 0; $i <= $#fields && ! $fieldSpec; $i++) { | |
1983 | my $thisField = $fields[$i]; | |
1984 | if ($thisField->{name} eq $keyName) { | |
1985 | # Get the sort modifier for this field type. The modifier | |
1986 | # decides whether we're using a character, numeric, or | |
1987 | # floating-point sort. | |
1988 | my $modifier = $TypeTable{$thisField->{type}}->{sort}; | |
1989 | # If the index is descending for this field, denote we want | |
1990 | # to reverse the sort order on this field. | |
1991 | if ($ordering eq 'descending') { | |
1992 | $modifier .= "r"; | |
1993 | } | |
1994 | # Store the position and modifier into the field spec, which | |
1995 | # will stop the inner loop. Note that the field number is | |
1996 | # 1-based in the sort command, so we have to increment the | |
1997 | # index. | |
1998 | $fieldSpec = ($i + 1) . $modifier; | |
1999 | } | |
2000 | } | |
2001 | # Add this field to the sort command. | |
2002 | $retVal .= " -k$fieldSpec"; | |
2003 | } | |
2004 | # Return the result. | # Return the result. |
2005 | return $retVal; | return $retVal; |
2006 | } | } |
2007 | ||
2008 | =head3 GetEntityValues | =head3 GetList |
2009 | ||
2010 | C<< my @values = $erdb->GetEntityValues($entityType, $ID, \@fields); >> | C<< my @dbObjects = $erdb->GetList(\@objectNames, $filterClause, \@params); >> |
2011 | ||
2012 | Return a list of object descriptors for the specified objects as determined by the | |
2013 | specified filter clause. | |
2014 | ||
2015 | Return a list of values from a specified entity instance. | This method is essentially the same as L</Get> except it returns a list of objects rather |
2016 | than a query object that can be used to get the results one record at a time. | |
2017 | ||
2018 | =over 4 | =over 4 |
2019 | ||
2020 | =item entityType | =item objectNames |
2021 | ||
2022 | Entity type name. | List containing the names of the entity and relationship objects to be retrieved. |
2023 | ||
2024 | =item ID | =item filterClause |
2025 | ||
2026 | ID of the desired entity. | WHERE clause (without the WHERE) to be used to filter and sort the query. The WHERE clause can |
2027 | be parameterized with parameter markers (C<?>). Each field used in the WHERE clause must be | |
2028 | specified in the standard form B<I<objectName>(I<fieldName>)>. Any parameters specified | |
2029 | in the filter clause should be added to the parameter list as additional parameters. The | |
2030 | fields in a filter clause can come from primary entity relations, relationship relations, | |
2031 | or secondary entity relations; however, all of the entities and relationships involved must | |
2032 | be included in the list of object names. | |
2033 | ||
2034 | =item fields | The filter clause can also specify a sort order. To do this, simply follow the filter string |
2035 | with an ORDER BY clause. For example, the following filter string gets all genomes for a | |
2036 | particular genus and sorts them by species name. | |
2037 | ||
2038 | List of field names, each of the form I<objectName>C<(>I<fieldName>C<)>. | C<< "Genome(genus) = ? ORDER BY Genome(species)" >> |
2039 | ||
2040 | The rules for field references in a sort order are the same as those for field references in the | |
2041 | filter clause in general; however, odd things may happen if a sort field is from a secondary | |
2042 | relation. | |
2043 | ||
2044 | =item params | |
2045 | ||
2046 | Reference to a list of parameter values to be substituted into the filter clause. | |
2047 | ||
2048 | =item RETURN | =item RETURN |
2049 | ||
2050 | Returns a flattened list of the values of the specified fields for the specified entity. | Returns a list of B<DBObject>s that satisfy the query conditions. |
2051 | ||
2052 | =back | =back |
2053 | ||
2054 | =cut | =cut |
2055 | #: Return Type @% | |
2056 | sub GetEntityValues { | sub GetList { |
2057 | # Get the parameters. | # Get the parameters. |
2058 | my ($self, $entityType, $ID, $fields) = @_; | my ($self, $objectNames, $filterClause, $params) = @_; |
2059 | # Get the specified entity. | # Declare the return variable. |
my $entity = $self->GetEntity($entityType, $ID); | ||
# Declare the return list. | ||
2060 | my @retVal = (); | my @retVal = (); |
2061 | # If we found the entity, push the values into the return list. | # Perform the query. |
2062 | if ($entity) { | my $query = $self->Get($objectNames, $filterClause, $params); |
2063 | push @retVal, $entity->Values($fields); | # Loop through the results. |
2064 | while (my $object = $query->Fetch) { | |
2065 | push @retVal, $object; | |
2066 | } | } |
2067 | # Return the result. | # Return the result. |
2068 | return @retVal; | return @retVal; |
2069 | } | } |
2070 | ||
2071 | =head3 GetAll | =head3 GetCount |
2072 | ||
2073 | C<< my @list = $erdb->GetAll(\@objectNames, $filterClause, \@parameters, \@fields, $count); >> | C<< my $count = $erdb->GetCount(\@objectNames, $filter, \@params); >> |
2074 | ||
2075 | Return a list of values taken from the objects returned by a query. The first three | Return the number of rows found by a specified query. This method would |
2076 | parameters correspond to the parameters of the L</Get> method. The final parameter is | normally be used to count the records in a single table. For example, in a |
2077 | a list of the fields desired from each record found by the query. The field name | genetics database |
syntax is the standard syntax used for fields in the B<ERDB> system-- | ||
B<I<objectName>(I<fieldName>)>-- where I<objectName> is the name of the relevant entity | ||
or relationship and I<fieldName> is the name of the field. | ||
2078 | ||
2079 | The list returned will be a list of lists. Each element of the list will contain | my $count = $erdb->GetCount(['Genome'], 'Genome(genus-species) LIKE ?', ['homo %']); |
2080 | the values returned for the fields specified in the fourth parameter. If one of the | |
2081 | fields specified returns multiple values, they are flattened in with the rest. For | would return the number of genomes for the genus I<homo>. It is conceivable, however, |
2082 | example, the following call will return a list of the features in a particular | to use it to return records based on a join. For example, |
2083 | spreadsheet cell, and each feature will be represented by a list containing the | |
2084 | feature ID followed by all of its aliases. | my $count = $erdb->GetCount(['HasFeature', 'Genome'], 'Genome(genus-species) LIKE ?', |
2085 | ['homo %']); | |
2086 | ||
2087 | would return the number of features for genomes in the genus I<homo>. Note that | |
2088 | only the rows from the first table are counted. If the above command were | |
2089 | ||
2090 | C<< $query = $erdb->Get(['ContainsFeature', 'Feature'], "ContainsFeature(from-link) = ?", [$ssCellID], ['Feature(id)', 'Feature(alias)']); >> | my $count = $erdb->GetCount(['Genome', 'Feature'], 'Genome(genus-species) LIKE ?', |
2091 | ['homo %']); | |
2092 | ||
2093 | it would return the number of genomes, not the number of genome/feature pairs. | |
2094 | ||
2095 | =over 4 | =over 4 |
2096 | ||
2097 | =item objectNames | =item objectNames |
2098 | ||
2099 | List containing the names of the entity and relationship objects to be retrieved. | Reference to a list of the objects (entities and relationships) included in the |
2100 | query. | |
2101 | ||
2102 | =item filterClause | =item filter |
2103 | ||
2104 | WHERE/ORDER BY clause (without the WHERE) to be used to filter and sort the query. The WHERE clause can | A filter clause for restricting the query. The rules are the same as for the L</Get> |
2105 | method. | |
2106 | ||
2107 | =item params | |
2108 | ||
2109 | Reference to a list of the parameter values to be substituted for the parameter marks | |
2110 | in the filter. | |
2111 | ||
2112 | =item RETURN | |
2113 | ||
2114 | Returns a count of the number of records in the first table that would satisfy | |
2115 | the query. | |
2116 | ||
2117 | =back | |
2118 | ||
2119 | =cut | |
2120 | ||
2121 | sub GetCount { | |
2122 | # Get the parameters. | |
2123 | my ($self, $objectNames, $filter, $params) = @_; | |
2124 | # Insure the params argument is an array reference if the caller left it off. | |
2125 | if (! defined($params)) { | |
2126 | $params = []; | |
2127 | } | |
2128 | # Declare the return variable. | |
2129 | my $retVal; | |
2130 | # Find out if we're counting an entity or a relationship. | |
2131 | my $countedField; | |
2132 | if ($self->IsEntity($objectNames->[0])) { | |
2133 | $countedField = "id"; | |
2134 | } else { | |
2135 | # For a relationship we count the to-link because it's usually more | |
2136 | # numerous. Note we're automatically converting to the SQL form | |
2137 | # of the field name (to_link vs. to-link). | |
2138 | $countedField = "to_link"; | |
2139 | } | |
2140 | # Create the SQL command suffix to get the desired records. | |
2141 | my ($suffix, $mappedNameListRef, $mappedNameHashRef) = $self->_SetupSQL($objectNames, | |
2142 | $filter); | |
2143 | # Prefix it with text telling it we want a record count. | |
2144 | my $firstObject = $mappedNameListRef->[0]; | |
2145 | my $command = "SELECT COUNT($firstObject.$countedField) $suffix"; | |
2146 | # Prepare and execute the command. | |
2147 | my $sth = $self->_GetStatementHandle($command, $params); | |
2148 | # Get the count value. | |
2149 | ($retVal) = $sth->fetchrow_array(); | |
2150 | # Check for a problem. | |
2151 | if (! defined($retVal)) { | |
2152 | if ($sth->err) { | |
2153 | # Here we had an SQL error. | |
2154 | Confess("Error retrieving row count: " . $sth->errstr()); | |
2155 | } else { | |
2156 | # Here we have no result. | |
2157 | Confess("No result attempting to retrieve row count."); | |
2158 | } | |
2159 | } | |
2160 | # Return the result. | |
2161 | return $retVal; | |
2162 | } | |
2163 | ||
2164 | =head3 ComputeObjectSentence | |
2165 | ||
2166 | C<< my $sentence = $erdb->ComputeObjectSentence($objectName); >> | |
2167 | ||
2168 | Check an object name, and if it is a relationship convert it to a relationship sentence. | |
2169 | ||
2170 | =over 4 | |
2171 | ||
2172 | =item objectName | |
2173 | ||
2174 | Name of the entity or relationship. | |
2175 | ||
2176 | =item RETURN | |
2177 | ||
2178 | Returns a string containing the entity name or a relationship sentence. | |
2179 | ||
2180 | =back | |
2181 | ||
2182 | =cut | |
2183 | ||
2184 | sub ComputeObjectSentence { | |
2185 | # Get the parameters. | |
2186 | my ($self, $objectName) = @_; | |
2187 | # Set the default return value. | |
2188 | my $retVal = $objectName; | |
2189 | # Look for the object as a relationship. | |
2190 | my $relTable = $self->{_metaData}->{Relationships}; | |
2191 | if (exists $relTable->{$objectName}) { | |
2192 | # Get the relationship sentence. | |
2193 | $retVal = _ComputeRelationshipSentence($objectName, $relTable->{$objectName}); | |
2194 | } | |
2195 | # Return the result. | |
2196 | return $retVal; | |
2197 | } | |
2198 | ||
2199 | =head3 DumpRelations | |
2200 | ||
2201 | C<< $erdb->DumpRelations($outputDirectory); >> | |
2202 | ||
2203 | Write the contents of all the relations to tab-delimited files in the specified directory. | |
2204 | Each file will have the same name as the relation dumped, with an extension of DTX. | |
2205 | ||
2206 | =over 4 | |
2207 | ||
2208 | =item outputDirectory | |
2209 | ||
2210 | Name of the directory into which the relation files should be dumped. | |
2211 | ||
2212 | =back | |
2213 | ||
2214 | =cut | |
2215 | ||
2216 | sub DumpRelations { | |
2217 | # Get the parameters. | |
2218 | my ($self, $outputDirectory) = @_; | |
2219 | # Now we need to run through all the relations. First, we loop through the entities. | |
2220 | my $metaData = $self->{_metaData}; | |
2221 | my $entities = $metaData->{Entities}; | |
2222 | for my $entityName (keys %{$entities}) { | |
2223 | my $entityStructure = $entities->{$entityName}; | |
2224 | # Get the entity's relations. | |
2225 | my $relationList = $entityStructure->{Relations}; | |
2226 | # Loop through the relations, dumping them. | |
2227 | for my $relationName (keys %{$relationList}) { | |
2228 | my $relation = $relationList->{$relationName}; | |
2229 | $self->_DumpRelation($outputDirectory, $relationName, $relation); | |
2230 | } | |
2231 | } | |
2232 | # Next, we loop through the relationships. | |
2233 | my $relationships = $metaData->{Relationships}; | |
2234 | for my $relationshipName (keys %{$relationships}) { | |
2235 | my $relationshipStructure = $relationships->{$relationshipName}; | |
2236 | # Dump this relationship's relation. | |
2237 | $self->_DumpRelation($outputDirectory, $relationshipName, $relationshipStructure->{Relations}->{$relationshipName}); | |
2238 | } | |
2239 | } | |
2240 | ||
2241 | =head3 InsertValue | |
2242 | ||
2243 | C<< $erdb->InsertValue($entityID, $fieldName, $value); >> | |
2244 | ||
2245 | This method will insert a new value into the database. The value must be one | |
2246 | associated with a secondary relation, since primary values cannot be inserted: | |
2247 | they occur exactly once. Secondary values, on the other hand, can be missing | |
2248 | or multiply-occurring. | |
2249 | ||
2250 | =over 4 | |
2251 | ||
2252 | =item entityID | |
2253 | ||
2254 | ID of the object that is to receive the new value. | |
2255 | ||
2256 | =item fieldName | |
2257 | ||
2258 | Field name for the new value-- this includes the entity name, since | |
2259 | field names are of the format I<objectName>C<(>I<fieldName>C<)>. | |
2260 | ||
2261 | =item value | |
2262 | ||
2263 | New value to be put in the field. | |
2264 | ||
2265 | =back | |
2266 | ||
2267 | =cut | |
2268 | ||
2269 | sub InsertValue { | |
2270 | # Get the parameters. | |
2271 | my ($self, $entityID, $fieldName, $value) = @_; | |
2272 | # Parse the entity name and the real field name. | |
2273 | if ($fieldName =~ /^([^(]+)\(([^)]+)\)/) { | |
2274 | my $entityName = $1; | |
2275 | my $fieldTitle = $2; | |
2276 | # Get its descriptor. | |
2277 | if (!$self->IsEntity($entityName)) { | |
2278 | Confess("$entityName is not a valid entity."); | |
2279 | } else { | |
2280 | my $entityData = $self->{_metaData}->{Entities}->{$entityName}; | |
2281 | # Find the relation containing this field. | |
2282 | my $fieldHash = $entityData->{Fields}; | |
2283 | if (! exists $fieldHash->{$fieldTitle}) { | |
2284 | Confess("$fieldTitle not found in $entityName."); | |
2285 | } else { | |
2286 | my $relation = $fieldHash->{$fieldTitle}->{relation}; | |
2287 | if ($relation eq $entityName) { | |
2288 | Confess("Cannot do InsertValue on primary field $fieldTitle of $entityName."); | |
2289 | } else { | |
2290 | # Now we can create an INSERT statement. | |
2291 | my $dbh = $self->{_dbh}; | |
2292 | my $fixedName = _FixName($fieldTitle); | |
2293 | my $statement = "INSERT INTO $relation (id, $fixedName) VALUES(?, ?)"; | |
2294 | # Execute the command. | |
2295 | $dbh->SQL($statement, 0, $entityID, $value); | |
2296 | } | |
2297 | } | |
2298 | } | |
2299 | } else { | |
2300 | Confess("$fieldName is not a valid field name."); | |
2301 | } | |
2302 | } | |
2303 | ||
2304 | =head3 InsertObject | |
2305 | ||
2306 | C<< $erdb->InsertObject($objectType, \%fieldHash); >> | |
2307 | ||
2308 | Insert an object into the database. The object is defined by a type name and then a hash | |
2309 | of field names to values. Field values in the primary relation are represented by scalars. | |
2310 | (Note that for relationships, the primary relation is the B<only> relation.) | |
2311 | Field values for the other relations comprising the entity are always list references. For | |
2312 | example, the following line inserts an inactive PEG feature named C<fig|188.1.peg.1> with aliases | |
2313 | C<ZP_00210270.1> and C<gi|46206278>. | |
2314 | ||
2315 | C<< $erdb->InsertObject('Feature', { id => 'fig|188.1.peg.1', active => 0, feature-type => 'peg', alias => ['ZP_00210270.1', 'gi|46206278']}); >> | |
2316 | ||
2317 | The next statement inserts a C<HasProperty> relationship between feature C<fig|158879.1.peg.1> and | |
2318 | property C<4> with an evidence URL of C<http://seedu.uchicago.edu/query.cgi?article_id=142>. | |
2319 | ||
2320 | C<< $erdb->InsertObject('HasProperty', { 'from-link' => 'fig|158879.1.peg.1', 'to-link' => 4, evidence => 'http://seedu.uchicago.edu/query.cgi?article_id=142'}); >> | |
2321 | ||
2322 | =over 4 | |
2323 | ||
2324 | =item newObjectType | |
2325 | ||
2326 | Type name of the object to insert. | |
2327 | ||
2328 | =item fieldHash | |
2329 | ||
2330 | Hash of field names to values. | |
2331 | ||
2332 | =back | |
2333 | ||
2334 | =cut | |
2335 | ||
2336 | sub InsertObject { | |
2337 | # Get the parameters. | |
2338 | my ($self, $newObjectType, $fieldHash) = @_; | |
2339 | # Denote that so far we appear successful. | |
2340 | my $retVal = 1; | |
2341 | # Get the database handle. | |
2342 | my $dbh = $self->{_dbh}; | |
2343 | # Get the relation list. | |
2344 | my $relationTable = $self->_GetRelationTable($newObjectType); | |
2345 | # Loop through the relations. We'll build insert statements for each one. If a relation is | |
2346 | # secondary, we may end up generating multiple insert statements. If an error occurs, we | |
2347 | # stop the loop. | |
2348 | my @relationList = keys %{$relationTable}; | |
2349 | for (my $i = 0; $retVal && $i <= $#relationList; $i++) { | |
2350 | my $relationName = $relationList[$i]; | |
2351 | my $relationDefinition = $relationTable->{$relationName}; | |
2352 | # Get the relation's fields. For each field we will collect a value in the corresponding | |
2353 | # position of the @valueList array. If one of the fields is missing, we will add it to the | |
2354 | # @missing list. | |
2355 | my @fieldList = @{$relationDefinition->{Fields}}; | |
2356 | my @fieldNameList = (); | |
2357 | my @valueList = (); | |
2358 | my @missing = (); | |
2359 | my $recordCount = 1; | |
2360 | for my $fieldDescriptor (@fieldList) { | |
2361 | # Get the field name and save it. Note we need to fix it up so the hyphens | |
2362 | # are converted to underscores. | |
2363 | my $fieldName = $fieldDescriptor->{name}; | |
2364 | push @fieldNameList, _FixName($fieldName); | |
2365 | # Look for the named field in the incoming structure. Note that we are looking | |
2366 | # for the real field name, not the fixed-up one! | |
2367 | if (exists $fieldHash->{$fieldName}) { | |
2368 | # Here we found the field. Stash it in the value list. | |
2369 | my $value = $fieldHash->{$fieldName}; | |
2370 | push @valueList, $value; | |
2371 | # If the value is a list, we may need to increment the record count. | |
2372 | if (ref $value eq "ARRAY") { | |
2373 | my $thisCount = @{$value}; | |
2374 | if ($recordCount == 1) { | |
2375 | # Here we have our first list, so we save its count. | |
2376 | $recordCount = $thisCount; | |
2377 | } elsif ($recordCount != $thisCount) { | |
2378 | # Here we have a second list, so its length has to match the | |
2379 | # previous lists. | |
2380 | Trace("Field $value in new $newObjectType object has an invalid list length $thisCount. Expected $recordCount.") if T(0); | |
2381 | $retVal = 0; | |
2382 | } | |
2383 | } | |
2384 | } else { | |
2385 | # Here the field is not present. Flag it as missing. | |
2386 | push @missing, $fieldName; | |
2387 | } | |
2388 | } | |
2389 | # If we are the primary relation, add the new-record flag. | |
2390 | if ($relationName eq $newObjectType) { | |
2391 | push @valueList, 1; | |
2392 | push @fieldNameList, "new_record"; | |
2393 | } | |
2394 | # Only proceed if there are no missing fields. | |
2395 | if (@missing > 0) { | |
2396 | Trace("Relation $relationName for $newObjectType skipped due to missing fields: " . | |
2397 | join(' ', @missing)) if T(1); | |
2398 | } else { | |
2399 | # Build the INSERT statement. | |
2400 | my $statement = "INSERT INTO $relationName (" . join (', ', @fieldNameList) . | |
2401 | ") VALUES ("; | |
2402 | # Create a marker list of the proper size and put it in the statement. | |
2403 | my @markers = (); | |
2404 | while (@markers < @fieldNameList) { push @markers, '?'; } | |
2405 | $statement .= join(', ', @markers) . ")"; | |
2406 | # We have the insert statement, so prepare it. | |
2407 | my $sth = $dbh->prepare_command($statement); | |
2408 | Trace("Insert statement prepared: $statement") if T(3); | |
2409 | # Now we loop through the values. If a value is scalar, we use it unmodified. If it's | |
2410 | # a list, we use the current element. The values are stored in the @parameterList array. | |
2411 | my $done = 0; | |
2412 | for (my $i = 0; $i < $recordCount; $i++) { | |
2413 | # Clear the parameter list array. | |
2414 | my @parameterList = (); | |
2415 | # Loop through the values. | |
2416 | for my $value (@valueList) { | |
2417 | # Check to see if this is a scalar value. | |
2418 | if (ref $value eq "ARRAY") { | |
2419 | # Here we have a list value. Pull the current entry. | |
2420 | push @parameterList, $value->[$i]; | |
2421 | } else { | |
2422 | # Here we have a scalar value. Use it unmodified. | |
2423 | push @parameterList, $value; | |
2424 | } | |
2425 | } | |
2426 | # Execute the INSERT statement with the specified parameter list. | |
2427 | $retVal = $sth->execute(@parameterList); | |
2428 | if (!$retVal) { | |
2429 | my $errorString = $sth->errstr(); | |
2430 | Confess("Error inserting into $relationName: $errorString"); | |
2431 | } | |
2432 | } | |
2433 | } | |
2434 | } | |
2435 | # Return a 1 for backward compatability. | |
2436 | return 1; | |
2437 | } | |
2438 | ||
2439 | =head3 UpdateEntity | |
2440 | ||
2441 | C<< $erdb->UpdateEntity($entityName, $id, \%fields); >> | |
2442 | ||
2443 | Update the values of an entity. This is an unprotected update, so it should only be | |
2444 | done if the database resides on a database server. | |
2445 | ||
2446 | =over 4 | |
2447 | ||
2448 | =item entityName | |
2449 | ||
2450 | Name of the entity to update. (This is the entity type.) | |
2451 | ||
2452 | =item id | |
2453 | ||
2454 | ID of the entity to update. If no entity exists with this ID, an error will be thrown. | |
2455 | ||
2456 | =item fields | |
2457 | ||
2458 | Reference to a hash mapping field names to their new values. All of the fields named | |
2459 | must be in the entity's primary relation, and they cannot any of them be the ID field. | |
2460 | ||
2461 | =back | |
2462 | ||
2463 | =cut | |
2464 | ||
2465 | sub UpdateEntity { | |
2466 | # Get the parameters. | |
2467 | my ($self, $entityName, $id, $fields) = @_; | |
2468 | # Get a list of the field names being updated. | |
2469 | my @fieldList = keys %{$fields}; | |
2470 | # Verify that the fields exist. | |
2471 | my $checker = $self->GetFieldTable($entityName); | |
2472 | for my $field (@fieldList) { | |
2473 | if ($field eq 'id') { | |
2474 | Confess("Cannot update the ID field for entity $entityName."); | |
2475 | } elsif ($checker->{$field}->{relation} ne $entityName) { | |
2476 | Confess("Cannot find $field in primary relation of $entityName."); | |
2477 | } | |
2478 | } | |
2479 | # Build the SQL statement. | |
2480 | my @sets = (); | |
2481 | my @valueList = (); | |
2482 | for my $field (@fieldList) { | |
2483 | push @sets, _FixName($field) . " = ?"; | |
2484 | push @valueList, $fields->{$field}; | |
2485 | } | |
2486 | my $command = "UPDATE $entityName SET " . join(", ", @sets) . " WHERE id = ?"; | |
2487 | # Add the ID to the list of binding values. | |
2488 | push @valueList, $id; | |
2489 | # Call SQL to do the work. | |
2490 | my $rows = $self->{_dbh}->SQL($command, 0, @valueList); | |
2491 | # Check for errors. | |
2492 | if ($rows == 0) { | |
2493 | Confess("Entity $id of type $entityName not found."); | |
2494 | } | |
2495 | } | |
2496 | ||
2497 | =head3 LoadTable | |
2498 | ||
2499 | C<< my $results = $erdb->LoadTable($fileName, $relationName, $truncateFlag); >> | |
2500 | ||
2501 | Load data from a tab-delimited file into a specified table, optionally re-creating the table | |
2502 | first. | |
2503 | ||
2504 | =over 4 | |
2505 | ||
2506 | =item fileName | |
2507 | ||
2508 | Name of the file from which the table data should be loaded. | |
2509 | ||
2510 | =item relationName | |
2511 | ||
2512 | Name of the relation to be loaded. This is the same as the table name. | |
2513 | ||
2514 | =item truncateFlag | |
2515 | ||
2516 | TRUE if the table should be dropped and re-created, else FALSE | |
2517 | ||
2518 | =item RETURN | |
2519 | ||
2520 | Returns a statistical object containing a list of the error messages. | |
2521 | ||
2522 | =back | |
2523 | ||
2524 | =cut | |
2525 | sub LoadTable { | |
2526 | # Get the parameters. | |
2527 | my ($self, $fileName, $relationName, $truncateFlag) = @_; | |
2528 | # Create the statistical return object. | |
2529 | my $retVal = _GetLoadStats(); | |
2530 | # Trace the fact of the load. | |
2531 | Trace("Loading table $relationName from $fileName") if T(2); | |
2532 | # Get the database handle. | |
2533 | my $dbh = $self->{_dbh}; | |
2534 | # Get the input file size. | |
2535 | my $fileSize = -s $fileName; | |
2536 | # Get the relation data. | |
2537 | my $relation = $self->_FindRelation($relationName); | |
2538 | # Check the truncation flag. | |
2539 | if ($truncateFlag) { | |
2540 | Trace("Creating table $relationName") if T(2); | |
2541 | # Compute the row count estimate. We take the size of the load file, | |
2542 | # divide it by the estimated row size, and then multiply by 1.5 to | |
2543 | # leave extra room. We postulate a minimum row count of 1000 to | |
2544 | # prevent problems with incoming empty load files. | |
2545 | my $rowSize = $self->EstimateRowSize($relationName); | |
2546 | my $estimate = FIG::max($fileSize * 1.5 / $rowSize, 1000); | |
2547 | # Re-create the table without its index. | |
2548 | $self->CreateTable($relationName, 0, $estimate); | |
2549 | # If this is a pre-index DBMS, create the index here. | |
2550 | if ($dbh->{_preIndex}) { | |
2551 | eval { | |
2552 | $self->CreateIndex($relationName); | |
2553 | }; | |
2554 | if ($@) { | |
2555 | $retVal->AddMessage($@); | |
2556 | } | |
2557 | } | |
2558 | } | |
2559 | # Load the table. | |
2560 | my $rv; | |
2561 | eval { | |
2562 | $rv = $dbh->load_table(file => $fileName, tbl => $relationName); | |
2563 | }; | |
2564 | if (!defined $rv) { | |
2565 | $retVal->AddMessage($@) if ($@); | |
2566 | $retVal->AddMessage("Table load failed for $relationName using $fileName: " . $dbh->error_message); | |
2567 | Trace("Table load failed for $relationName.") if T(1); | |
2568 | } else { | |
2569 | # Here we successfully loaded the table. | |
2570 | $retVal->Add("tables"); | |
2571 | my $size = -s $fileName; | |
2572 | Trace("$size bytes loaded into $relationName.") if T(2); | |
2573 | # If we're rebuilding, we need to create the table indexes. | |
2574 | if ($truncateFlag) { | |
2575 | # Indexes are created here for PostGres. For PostGres, indexes are | |
2576 | # best built at the end. For MySQL, the reverse is true. | |
2577 | if (! $dbh->{_preIndex}) { | |
2578 | eval { | |
2579 | $self->CreateIndex($relationName); | |
2580 | }; | |
2581 | if ($@) { | |
2582 | $retVal->AddMessage($@); | |
2583 | } | |
2584 | } | |
2585 | # The full-text index (if any) is always built last, even for MySQL. | |
2586 | # First we need to see if this table has a full-text index. Only | |
2587 | # primary relations are allowed that privilege. | |
2588 | Trace("Checking for full-text index on $relationName.") if T(2); | |
2589 | if ($self->_IsPrimary($relationName)) { | |
2590 | # Get the relation's entity/relationship structure. | |
2591 | my $structure = $self->_GetStructure($relationName); | |
2592 | Trace("Checking for search fields in $relationName.") if T(3); | |
2593 | # Check for a searchable fields list. | |
2594 | if (exists $structure->{searchFields}) { | |
2595 | # Here we know that we need to create a full-text search index. | |
2596 | # Get an SQL-formatted field name list. | |
2597 | my $fields = join(", ", _FixNames(@{$structure->{searchFields}})); | |
2598 | # Create the index. | |
2599 | $dbh->create_index(tbl => $relationName, idx => "search_idx", | |
2600 | flds => $fields, kind => 'fulltext'); | |
2601 | Trace("Index created for $fields in $relationName.") if T(2); | |
2602 | } | |
2603 | } | |
2604 | } | |
2605 | } | |
2606 | # Analyze the table to improve performance. | |
2607 | Trace("Analyzing and compacting $relationName.") if T(3); | |
2608 | $dbh->vacuum_it($relationName); | |
2609 | Trace("$relationName load completed.") if T(3); | |
2610 | # Return the statistics. | |
2611 | return $retVal; | |
2612 | } | |
2613 | ||
2614 | =head3 DropRelation | |
2615 | ||
2616 | C<< $erdb->DropRelation($relationName); >> | |
2617 | ||
2618 | Physically drop a relation from the database. | |
2619 | ||
2620 | =over 4 | |
2621 | ||
2622 | =item relationName | |
2623 | ||
2624 | Name of the relation to drop. If it does not exist, this method will have | |
2625 | no effect. | |
2626 | ||
2627 | =back | |
2628 | ||
2629 | =cut | |
2630 | ||
2631 | sub DropRelation { | |
2632 | # Get the parameters. | |
2633 | my ($self, $relationName) = @_; | |
2634 | # Get the database handle. | |
2635 | my $dbh = $self->{_dbh}; | |
2636 | # Drop the relation. The method used here has no effect if the relation | |
2637 | # does not exist. | |
2638 | Trace("Invoking DB Kernel to drop $relationName.") if T(3); | |
2639 | $dbh->drop_table(tbl => $relationName); | |
2640 | } | |
2641 | ||
2642 | =head3 MatchSqlPattern | |
2643 | ||
2644 | C<< my $matched = ERDB::MatchSqlPattern($value, $pattern); >> | |
2645 | ||
2646 | Determine whether or not a specified value matches an SQL pattern. An SQL | |
2647 | pattern has two wild card characters: C<%> that matches multiple characters, | |
2648 | and C<_> that matches a single character. These can be escaped using a | |
2649 | backslash (C<\>). We pull this off by converting the SQL pattern to a | |
2650 | PERL regular expression. As per SQL rules, the match is case-insensitive. | |
2651 | ||
2652 | =over 4 | |
2653 | ||
2654 | =item value | |
2655 | ||
2656 | Value to be matched against the pattern. Note that an undefined or empty | |
2657 | value will not match anything. | |
2658 | ||
2659 | =item pattern | |
2660 | ||
2661 | SQL pattern against which to match the value. An undefined or empty pattern will | |
2662 | match everything. | |
2663 | ||
2664 | =item RETURN | |
2665 | ||
2666 | Returns TRUE if the value and pattern match, else FALSE. | |
2667 | ||
2668 | =back | |
2669 | ||
2670 | =cut | |
2671 | ||
2672 | sub MatchSqlPattern { | |
2673 | # Get the parameters. | |
2674 | my ($value, $pattern) = @_; | |
2675 | # Declare the return variable. | |
2676 | my $retVal; | |
2677 | # Insure we have a pattern. | |
2678 | if (! defined($pattern) || $pattern eq "") { | |
2679 | $retVal = 1; | |
2680 | } else { | |
2681 | # Break the pattern into pieces around the wildcard characters. Because we | |
2682 | # use parentheses in the split function's delimiter expression, we'll get | |
2683 | # list elements for the delimiters as well as the rest of the string. | |
2684 | my @pieces = split /([_%]|\\[_%])/, $pattern; | |
2685 | # Check some fast special cases. | |
2686 | if ($pattern eq '%') { | |
2687 | # A null pattern matches everything. | |
2688 | $retVal = 1; | |
2689 | } elsif (@pieces == 1) { | |
2690 | # No wildcards, so we have a literal comparison. Note we're case-insensitive. | |
2691 | $retVal = (lc($value) eq lc($pattern)); | |
2692 | } elsif (@pieces == 2 && $pieces[1] eq '%') { | |
2693 | # A wildcard at the end, so we have a substring match. This is also case-insensitive. | |
2694 | $retVal = (lc(substr($value, 0, length($pieces[0]))) eq lc($pieces[0])); | |
2695 | } else { | |
2696 | # Okay, we have to do it the hard way. Convert each piece to a PERL pattern. | |
2697 | my $realPattern = ""; | |
2698 | for my $piece (@pieces) { | |
2699 | # Determine the type of piece. | |
2700 | if ($piece eq "") { | |
2701 | # Empty pieces are ignored. | |
2702 | } elsif ($piece eq "%") { | |
2703 | # Here we have a multi-character wildcard. Note that it can match | |
2704 | # zero or more characters. | |
2705 | $realPattern .= ".*" | |
2706 | } elsif ($piece eq "_") { | |
2707 | # Here we have a single-character wildcard. | |
2708 | $realPattern .= "."; | |
2709 | } elsif ($piece eq "\\%" || $piece eq "\\_") { | |
2710 | # This is an escape sequence (which is a rare thing, actually). | |
2711 | $realPattern .= substr($piece, 1, 1); | |
2712 | } else { | |
2713 | # Here we have raw text. | |
2714 | $realPattern .= quotemeta($piece); | |
2715 | } | |
2716 | } | |
2717 | # Do the match. | |
2718 | $retVal = ($value =~ /^$realPattern$/i ? 1 : 0); | |
2719 | } | |
2720 | } | |
2721 | # Return the result. | |
2722 | return $retVal; | |
2723 | } | |
2724 | ||
2725 | =head3 GetEntity | |
2726 | ||
2727 | C<< my $entityObject = $erdb->GetEntity($entityType, $ID); >> | |
2728 | ||
2729 | Return an object describing the entity instance with a specified ID. | |
2730 | ||
2731 | =over 4 | |
2732 | ||
2733 | =item entityType | |
2734 | ||
2735 | Entity type name. | |
2736 | ||
2737 | =item ID | |
2738 | ||
2739 | ID of the desired entity. | |
2740 | ||
2741 | =item RETURN | |
2742 | ||
2743 | Returns a B<DBObject> representing the desired entity instance, or an undefined value if no | |
2744 | instance is found with the specified key. | |
2745 | ||
2746 | =back | |
2747 | ||
2748 | =cut | |
2749 | ||
2750 | sub GetEntity { | |
2751 | # Get the parameters. | |
2752 | my ($self, $entityType, $ID) = @_; | |
2753 | # Create a query. | |
2754 | my $query = $self->Get([$entityType], "$entityType(id) = ?", [$ID]); | |
2755 | # Get the first (and only) object. | |
2756 | my $retVal = $query->Fetch(); | |
2757 | # Return the result. | |
2758 | return $retVal; | |
2759 | } | |
2760 | ||
2761 | =head3 GetChoices | |
2762 | ||
2763 | C<< my @values = $erdb->GetChoices($entityName, $fieldName); >> | |
2764 | ||
2765 | Return a list of all the values for the specified field that are represented in the | |
2766 | specified entity. | |
2767 | ||
2768 | Note that if the field is not indexed, then this will be a very slow operation. | |
2769 | ||
2770 | =over 4 | |
2771 | ||
2772 | =item entityName | |
2773 | ||
2774 | Name of an entity in the database. | |
2775 | ||
2776 | =item fieldName | |
2777 | ||
2778 | Name of a field belonging to the entity. This is a raw field name without | |
2779 | the standard parenthesized notation used in most calls. | |
2780 | ||
2781 | =item RETURN | |
2782 | ||
2783 | Returns a list of the distinct values for the specified field in the database. | |
2784 | ||
2785 | =back | |
2786 | ||
2787 | =cut | |
2788 | ||
2789 | sub GetChoices { | |
2790 | # Get the parameters. | |
2791 | my ($self, $entityName, $fieldName) = @_; | |
2792 | # Declare the return variable. | |
2793 | my @retVal; | |
2794 | # Get the entity data structure. | |
2795 | my $entityData = $self->_GetStructure($entityName); | |
2796 | # Get the field. | |
2797 | my $fieldHash = $entityData->{Fields}; | |
2798 | if (! exists $fieldHash->{$fieldName}) { | |
2799 | Confess("$fieldName not found in $entityName."); | |
2800 | } else { | |
2801 | # Get the name of the relation containing the field. | |
2802 | my $relation = $fieldHash->{$fieldName}->{relation}; | |
2803 | # Fix up the field name. | |
2804 | my $realName = _FixName($fieldName); | |
2805 | # Get the database handle. | |
2806 | my $dbh = $self->{_dbh}; | |
2807 | # Query the database. | |
2808 | my $results = $dbh->SQL("SELECT DISTINCT $realName FROM $relation"); | |
2809 | # Clean the results. They are stored as a list of lists, and we just want the one list. | |
2810 | @retVal = sort map { $_->[0] } @{$results}; | |
2811 | } | |
2812 | # Return the result. | |
2813 | return @retVal; | |
2814 | } | |
2815 | ||
2816 | =head3 GetEntityValues | |
2817 | ||
2818 | C<< my @values = $erdb->GetEntityValues($entityType, $ID, \@fields); >> | |
2819 | ||
2820 | Return a list of values from a specified entity instance. If the entity instance | |
2821 | does not exist, an empty list is returned. | |
2822 | ||
2823 | =over 4 | |
2824 | ||
2825 | =item entityType | |
2826 | ||
2827 | Entity type name. | |
2828 | ||
2829 | =item ID | |
2830 | ||
2831 | ID of the desired entity. | |
2832 | ||
2833 | =item fields | |
2834 | ||
2835 | List of field names, each of the form I<objectName>C<(>I<fieldName>C<)>. | |
2836 | ||
2837 | =item RETURN | |
2838 | ||
2839 | Returns a flattened list of the values of the specified fields for the specified entity. | |
2840 | ||
2841 | =back | |
2842 | ||
2843 | =cut | |
2844 | ||
2845 | sub GetEntityValues { | |
2846 | # Get the parameters. | |
2847 | my ($self, $entityType, $ID, $fields) = @_; | |
2848 | # Get the specified entity. | |
2849 | my $entity = $self->GetEntity($entityType, $ID); | |
2850 | # Declare the return list. | |
2851 | my @retVal = (); | |
2852 | # If we found the entity, push the values into the return list. | |
2853 | if ($entity) { | |
2854 | push @retVal, $entity->Values($fields); | |
2855 | } | |
2856 | # Return the result. | |
2857 | return @retVal; | |
2858 | } | |
2859 | ||
2860 | =head3 GetAll | |
2861 | ||
2862 | C<< my @list = $erdb->GetAll(\@objectNames, $filterClause, \@parameters, \@fields, $count); >> | |
2863 | ||
2864 | Return a list of values taken from the objects returned by a query. The first three | |
2865 | parameters correspond to the parameters of the L</Get> method. The final parameter is | |
2866 | a list of the fields desired from each record found by the query. The field name | |
2867 | syntax is the standard syntax used for fields in the B<ERDB> system-- | |
2868 | B<I<objectName>(I<fieldName>)>-- where I<objectName> is the name of the relevant entity | |
2869 | or relationship and I<fieldName> is the name of the field. | |
2870 | ||
2871 | The list returned will be a list of lists. Each element of the list will contain | |
2872 | the values returned for the fields specified in the fourth parameter. If one of the | |
2873 | fields specified returns multiple values, they are flattened in with the rest. For | |
2874 | example, the following call will return a list of the features in a particular | |
2875 | spreadsheet cell, and each feature will be represented by a list containing the | |
2876 | feature ID followed by all of its aliases. | |
2877 | ||
2878 | C<< @query = $erdb->Get(['ContainsFeature', 'Feature'], "ContainsFeature(from-link) = ?", [$ssCellID], ['Feature(id)', 'Feature(alias)']); >> | |
2879 | ||
2880 | =over 4 | |
2881 | ||
2882 | =item objectNames | |
2883 | ||
2884 | List containing the names of the entity and relationship objects to be retrieved. | |
2885 | ||
2886 | =item filterClause | |
2887 | ||
2888 | WHERE/ORDER BY clause (without the WHERE) to be used to filter and sort the query. The WHERE clause can | |
2889 | be parameterized with parameter markers (C<?>). Each field used must be specified in the standard form | be parameterized with parameter markers (C<?>). Each field used must be specified in the standard form |
2890 | B<I<objectName>(I<fieldName>)>. Any parameters specified in the filter clause should be added to the | B<I<objectName>(I<fieldName>)>. Any parameters specified in the filter clause should be added to the |
2891 | parameter list as additional parameters. The fields in a filter clause can come from primary | parameter list as additional parameters. The fields in a filter clause can come from primary |
2892 | entity relations, relationship relations, or secondary entity relations; however, all of the | entity relations, relationship relations, or secondary entity relations; however, all of the |
2893 | entities and relationships involved must be included in the list of object names. | entities and relationships involved must be included in the list of object names. |
2894 | ||
2895 | =item parameterList | =item parameterList |
2896 | ||
2897 | List of the parameters to be substituted in for the parameters marks in the filter clause. | |
2898 | ||
2899 | =item fields | |
2900 | ||
2901 | List of the fields to be returned in each element of the list returned. | |
2902 | ||
2903 | =item count | |
2904 | ||
2905 | Maximum number of records to return. If omitted or 0, all available records will be returned. | |
2906 | ||
2907 | =item RETURN | |
2908 | ||
2909 | Returns a list of list references. Each element of the return list contains the values for the | |
2910 | fields specified in the B<fields> parameter. | |
2911 | ||
2912 | =back | |
2913 | ||
2914 | =cut | |
2915 | #: Return Type @@; | |
2916 | sub GetAll { | |
2917 | # Get the parameters. | |
2918 | my ($self, $objectNames, $filterClause, $parameterList, $fields, $count) = @_; | |
2919 | # Translate the parameters from a list reference to a list. If the parameter | |
2920 | # list is a scalar we convert it into a singleton list. | |
2921 | my @parmList = (); | |
2922 | if (ref $parameterList eq "ARRAY") { | |
2923 | Trace("GetAll parm list is an array.") if T(4); | |
2924 | @parmList = @{$parameterList}; | |
2925 | } else { | |
2926 | Trace("GetAll parm list is a scalar: $parameterList.") if T(4); | |
2927 | push @parmList, $parameterList; | |
2928 | } | |
2929 | # Insure the counter has a value. | |
2930 | if (!defined $count) { | |
2931 | $count = 0; | |
2932 | } | |
2933 | # Add the row limit to the filter clause. | |
2934 | if ($count > 0) { | |
2935 | $filterClause .= " LIMIT $count"; | |
2936 | } | |
2937 | # Create the query. | |
2938 | my $query = $self->Get($objectNames, $filterClause, \@parmList); | |
2939 | # Set up a counter of the number of records read. | |
2940 | my $fetched = 0; | |
2941 | # Loop through the records returned, extracting the fields. Note that if the | |
2942 | # counter is non-zero, we stop when the number of records read hits the count. | |
2943 | my @retVal = (); | |
2944 | while (($count == 0 || $fetched < $count) && (my $row = $query->Fetch())) { | |
2945 | my @rowData = $row->Values($fields); | |
2946 | push @retVal, \@rowData; | |
2947 | $fetched++; | |
2948 | } | |
2949 | Trace("$fetched rows returned in GetAll.") if T(SQL => 4); | |
2950 | # Return the resulting list. | |
2951 | return @retVal; | |
2952 | } | |
2953 | ||
2954 | =head3 Exists | |
2955 | ||
2956 | C<< my $found = $sprout->Exists($entityName, $entityID); >> | |
2957 | ||
2958 | Return TRUE if an entity exists, else FALSE. | |
2959 | ||
2960 | =over 4 | |
2961 | ||
2962 | =item entityName | |
2963 | ||
2964 | Name of the entity type (e.g. C<Feature>) relevant to the existence check. | |
2965 | ||
2966 | =item entityID | |
2967 | ||
2968 | ID of the entity instance whose existence is to be checked. | |
2969 | ||
2970 | =item RETURN | |
2971 | ||
2972 | Returns TRUE if the entity instance exists, else FALSE. | |
2973 | ||
2974 | =back | |
2975 | ||
2976 | =cut | |
2977 | #: Return Type $; | |
2978 | sub Exists { | |
2979 | # Get the parameters. | |
2980 | my ($self, $entityName, $entityID) = @_; | |
2981 | # Check for the entity instance. | |
2982 | Trace("Checking existence of $entityName with ID=$entityID.") if T(4); | |
2983 | my $testInstance = $self->GetEntity($entityName, $entityID); | |
2984 | # Return an existence indicator. | |
2985 | my $retVal = ($testInstance ? 1 : 0); | |
2986 | return $retVal; | |
2987 | } | |
2988 | ||
2989 | =head3 EstimateRowSize | |
2990 | ||
2991 | C<< my $rowSize = $erdb->EstimateRowSize($relName); >> | |
2992 | ||
2993 | Estimate the row size of the specified relation. The estimated row size is computed by adding | |
2994 | up the average length for each data type. | |
2995 | ||
2996 | =over 4 | |
2997 | ||
2998 | =item relName | |
2999 | ||
3000 | Name of the relation whose estimated row size is desired. | |
3001 | ||
3002 | =item RETURN | |
3003 | ||
3004 | Returns an estimate of the row size for the specified relation. | |
3005 | ||
3006 | =back | |
3007 | ||
3008 | =cut | |
3009 | #: Return Type $; | |
3010 | sub EstimateRowSize { | |
3011 | # Get the parameters. | |
3012 | my ($self, $relName) = @_; | |
3013 | # Declare the return variable. | |
3014 | my $retVal = 0; | |
3015 | # Find the relation descriptor. | |
3016 | my $relation = $self->_FindRelation($relName); | |
3017 | # Get the list of fields. | |
3018 | for my $fieldData (@{$relation->{Fields}}) { | |
3019 | # Get the field type and add its length. | |
3020 | my $fieldLen = $TypeTable{$fieldData->{type}}->{avgLen}; | |
3021 | $retVal += $fieldLen; | |
3022 | } | |
3023 | # Return the result. | |
3024 | return $retVal; | |
3025 | } | |
3026 | ||
3027 | =head3 GetFieldTable | |
3028 | ||
3029 | C<< my $fieldHash = $self->GetFieldTable($objectnName); >> | |
3030 | ||
3031 | Get the field structure for a specified entity or relationship. | |
3032 | ||
3033 | =over 4 | |
3034 | ||
3035 | =item objectName | |
3036 | ||
3037 | Name of the desired entity or relationship. | |
3038 | ||
3039 | =item RETURN | |
3040 | ||
3041 | The table containing the field descriptors for the specified object. | |
3042 | ||
3043 | =back | |
3044 | ||
3045 | =cut | |
3046 | ||
3047 | sub GetFieldTable { | |
3048 | # Get the parameters. | |
3049 | my ($self, $objectName) = @_; | |
3050 | # Get the descriptor from the metadata. | |
3051 | my $objectData = $self->_GetStructure($objectName); | |
3052 | # Return the object's field table. | |
3053 | return $objectData->{Fields}; | |
3054 | } | |
3055 | ||
3056 | =head3 SplitKeywords | |
3057 | ||
3058 | C<< my @keywords = ERDB::SplitKeywords($keywordString); >> | |
3059 | ||
3060 | This method returns a list of the positive keywords in the specified | |
3061 | keyword string. All of the operators will have been stripped off, | |
3062 | and if the keyword is preceded by a minus operator (C<->), it will | |
3063 | not be in the list returned. The idea here is to get a list of the | |
3064 | keywords the user wants to see. The list will be processed to remove | |
3065 | duplicates. | |
3066 | ||
3067 | It is possible to create a string that confuses this method. For example | |
3068 | ||
3069 | frog toad -frog | |
3070 | ||
3071 | would return both C<frog> and C<toad>. If this is a problem we can deal | |
3072 | with it later. | |
3073 | ||
3074 | =over 4 | |
3075 | ||
3076 | =item keywordString | |
3077 | ||
3078 | The keyword string to be parsed. | |
3079 | ||
3080 | =item RETURN | |
3081 | ||
3082 | Returns a list of the words in the keyword string the user wants to | |
3083 | see. | |
3084 | ||
3085 | =back | |
3086 | ||
3087 | =cut | |
3088 | ||
3089 | sub SplitKeywords { | |
3090 | # Get the parameters. | |
3091 | my ($keywordString) = @_; | |
3092 | # Make a safety copy of the string. (This helps during debugging.) | |
3093 | my $workString = $keywordString; | |
3094 | # Convert operators we don't care about to spaces. | |
3095 | $workString =~ tr/+"()<>/ /; | |
3096 | # Split the rest of the string along space boundaries. Note that we | |
3097 | # eliminate any words that are zero length or begin with a minus sign. | |
3098 | my @wordList = grep { $_ && substr($_, 0, 1) ne "-" } split /\s+/, $workString; | |
3099 | # Use a hash to remove duplicates. | |
3100 | my %words = map { $_ => 1 } @wordList; | |
3101 | # Return the result. | |
3102 | return sort keys %words; | |
3103 | } | |
3104 | ||
3105 | =head3 ValidateFieldName | |
3106 | ||
3107 | C<< my $okFlag = ERDB::ValidateFieldName($fieldName); >> | |
3108 | ||
3109 | Return TRUE if the specified field name is valid, else FALSE. Valid field names must | |
3110 | be hyphenated words subject to certain restrictions. | |
3111 | ||
3112 | =over 4 | |
3113 | ||
3114 | =item fieldName | |
3115 | ||
3116 | Field name to be validated. | |
3117 | ||
3118 | =item RETURN | |
3119 | ||
3120 | Returns TRUE if the field name is valid, else FALSE. | |
3121 | ||
3122 | =back | |
3123 | ||
3124 | =cut | |
3125 | ||
3126 | sub ValidateFieldName { | |
3127 | # Get the parameters. | |
3128 | my ($fieldName) = @_; | |
3129 | # Declare the return variable. The field name is valid until we hear | |
3130 | # differently. | |
3131 | my $retVal = 1; | |
3132 | # Compute the maximum name length. | |
3133 | my $maxLen = $TypeTable{'name-string'}->{maxLen}; | |
3134 | # Look for bad stuff in the name. | |
3135 | if ($fieldName =~ /--/) { | |
3136 | # Here we have a doubled minus sign. | |
3137 | Trace("Field name $fieldName has a doubled hyphen.") if T(1); | |
3138 | $retVal = 0; | |
3139 | } elsif ($fieldName !~ /^[A-Za-z]/) { | |
3140 | # Here the field name is missing the initial letter. | |
3141 | Trace("Field name $fieldName does not begin with a letter.") if T(1); | |
3142 | $retVal = 0; | |
3143 | } elsif (length($fieldName) > $maxLen) { | |
3144 | # Here the field name is too long. | |
3145 | Trace("Maximum field name length is $maxLen. Field name must be truncated to " . substr($fieldName,0, $maxLen) . "."); | |
3146 | } else { | |
3147 | # Strip out the minus signs. Everything remaining must be a letter, | |
3148 | # underscore, or digit. | |
3149 | my $strippedName = $fieldName; | |
3150 | $strippedName =~ s/-//g; | |
3151 | if ($strippedName !~ /^(\w|\d)+$/) { | |
3152 | Trace("Field name $fieldName contains illegal characters.") if T(1); | |
3153 | $retVal = 0; | |
3154 | } | |
3155 | } | |
3156 | # Return the result. | |
3157 | return $retVal; | |
3158 | } | |
3159 | ||
3160 | =head3 ReadMetaXML | |
3161 | ||
3162 | C<< my $rawMetaData = ERDB::ReadDBD($fileName); >> | |
3163 | ||
3164 | This method reads a raw database definition XML file and returns it. | |
3165 | Normally, the metadata used by the ERDB system has been processed and | |
3166 | modified to make it easier to load and retrieve the data; however, | |
3167 | this method can be used to get the data in its raw form. | |
3168 | ||
3169 | =over 4 | |
3170 | ||
3171 | =item fileName | |
3172 | ||
3173 | Name of the XML file to read. | |
3174 | ||
3175 | =item RETURN | |
3176 | ||
3177 | Returns a hash reference containing the raw XML data from the specified file. | |
3178 | ||
3179 | =back | |
3180 | ||
3181 | =cut | |
3182 | ||
3183 | sub ReadMetaXML { | |
3184 | # Get the parameters. | |
3185 | my ($fileName) = @_; | |
3186 | # Read the XML. | |
3187 | my $retVal = XML::Simple::XMLin($fileName, %XmlOptions, %XmlInOpts); | |
3188 | Trace("XML metadata loaded from file $fileName.") if T(1); | |
3189 | # Return the result. | |
3190 | return $retVal; | |
3191 | } | |
3192 | ||
3193 | =head3 GetEntityFieldHash | |
3194 | ||
3195 | C<< my $fieldHashRef = ERDB::GetEntityFieldHash($structure, $entityName); >> | |
3196 | ||
3197 | Get the field hash of the named entity in the specified raw XML structure. | |
3198 | The field hash may not exist, in which case we need to create it. | |
3199 | ||
3200 | =over 4 | |
3201 | ||
3202 | =item structure | |
3203 | ||
3204 | Raw XML structure defininng the database. This is not the run-time XML used by | |
3205 | an ERDB object, since that has all sorts of optimizations built-in. | |
3206 | ||
3207 | =item entityName | |
3208 | ||
3209 | Name of the entity whose field structure is desired. | |
3210 | ||
3211 | =item RETURN | |
3212 | ||
3213 | Returns the field hash used to define the entity's fields. | |
3214 | ||
3215 | =back | |
3216 | ||
3217 | =cut | |
3218 | ||
3219 | sub GetEntityFieldHash { | |
3220 | # Get the parameters. | |
3221 | my ($structure, $entityName) = @_; | |
3222 | # Get the entity structure. | |
3223 | my $entityData = $structure->{Entities}->{$entityName}; | |
3224 | # Look for a field structure. | |
3225 | my $retVal = $entityData->{Fields}; | |
3226 | # If it doesn't exist, create it. | |
3227 | if (! defined($retVal)) { | |
3228 | $entityData->{Fields} = {}; | |
3229 | $retVal = $entityData->{Fields}; | |
3230 | } | |
3231 | # Return the result. | |
3232 | return $retVal; | |
3233 | } | |
3234 | ||
3235 | =head3 WriteMetaXML | |
3236 | ||
3237 | C<< ERDB::WriteMetaXML($structure, $fileName); >> | |
3238 | ||
3239 | Write the metadata XML to a file. This method is the reverse of L</ReadMetaXML>, and is | |
3240 | used to update the database definition. It must be used with care, however, since it | |
3241 | will only work on a raw structure, not on the processed structure created by an ERDB | |
3242 | constructor. | |
3243 | ||
3244 | =over 4 | |
3245 | ||
3246 | =item structure | |
3247 | ||
3248 | XML structure to be written to the file. | |
3249 | ||
3250 | =item fileName | |
3251 | ||
3252 | Name of the output file to which the updated XML should be stored. | |
3253 | ||
3254 | =back | |
3255 | ||
3256 | =cut | |
3257 | ||
3258 | sub WriteMetaXML { | |
3259 | # Get the parameters. | |
3260 | my ($structure, $fileName) = @_; | |
3261 | # Compute the output. | |
3262 | my $fileString = XML::Simple::XMLout($structure, %XmlOptions, %XmlOutOpts); | |
3263 | # Write it to the file. | |
3264 | my $xmlOut = Open(undef, ">$fileName"); | |
3265 | print $xmlOut $fileString; | |
3266 | } | |
3267 | ||
3268 | ||
3269 | =head3 HTMLNote | |
3270 | ||
3271 | Convert a note or comment to HTML by replacing some bulletin-board codes with HTML. The codes | |
3272 | supported are C<[b]> for B<bold>, C<[i]> for I<italics>, and C<[p]> for a new paragraph. | |
3273 | Except for C<[p]>, all the codes are closed by slash-codes. So, for | |
3274 | example, C<[b]Feature[/b]> displays the string C<Feature> in boldface. | |
3275 | ||
3276 | C<< my $realHtml = ERDB::HTMLNote($dataString); >> | |
3277 | ||
3278 | =over 4 | |
3279 | ||
3280 | =item dataString | |
3281 | ||
3282 | String to convert to HTML. | |
3283 | ||
3284 | =item RETURN | |
3285 | ||
3286 | List of the parameters to be substituted in for the parameters marks in the filter clause. | An HTML string derived from the input string. |
3287 | ||
3288 | =item fields | =back |
3289 | ||
3290 | List of the fields to be returned in each element of the list returned. | =cut |
3291 | ||
3292 | =item count | sub HTMLNote { |
3293 | # Get the parameter. | |
3294 | my ($dataString) = @_; | |
3295 | # HTML-escape the text. | |
3296 | my $retVal = CGI::escapeHTML($dataString); | |
3297 | # Substitute the bulletin board codes. | |
3298 | $retVal =~ s!\[(/?[bi])\]!<$1>!g; | |
3299 | $retVal =~ s!\[p\]!</p><p>!g; | |
3300 | # Return the result. | |
3301 | return $retVal; | |
3302 | } | |
3303 | ||
3304 | Maximum number of records to return. If omitted or 0, all available records will be returned. | |
3305 | =head2 Data Mining Methods | |
3306 | ||
3307 | =head3 GetUsefulCrossValues | |
3308 | ||
3309 | C<< my @attrNames = $sprout->GetUsefulCrossValues($sourceEntity, $relationship); >> | |
3310 | ||
3311 | Return a list of the useful attributes that would be returned by a B<Cross> call | |
3312 | from an entity of the source entity type through the specified relationship. This | |
3313 | means it will return the fields of the target entity type and the intersection data | |
3314 | fields in the relationship. Only primary table fields are returned. In other words, | |
3315 | the field names returned will be for fields where there is always one and only one | |
3316 | value. | |
3317 | ||
3318 | =over 4 | |
3319 | ||
3320 | =item sourceEntity | |
3321 | ||
3322 | Name of the entity from which the relationship crossing will start. | |
3323 | ||
3324 | =item relationship | |
3325 | ||
3326 | Name of the relationship being crossed. | |
3327 | ||
3328 | =item RETURN | =item RETURN |
3329 | ||
3330 | Returns a list of list references. Each element of the return list contains the values for the | Returns a list of field names in Sprout field format (I<objectName>C<(>I<fieldName>C<)>. |
fields specified in the B<fields> parameter. | ||
3331 | ||
3332 | =back | =back |
3333 | ||
3334 | =cut | =cut |
3335 | #: Return Type @@; | #: Return Type @; |
3336 | sub GetAll { | sub GetUsefulCrossValues { |
3337 | # Get the parameters. | # Get the parameters. |
3338 | my ($self, $objectNames, $filterClause, $parameterList, $fields, $count) = @_; | my ($self, $sourceEntity, $relationship) = @_; |
3339 | # Translate the parameters from a list reference to a list. If the parameter | # Declare the return variable. |
# list is a scalar we convert it into a singleton list. | ||
my @parmList = (); | ||
if (ref $parameterList eq "ARRAY") { | ||
@parmList = @{$parameterList}; | ||
} else { | ||
push @parmList, $parameterList; | ||
} | ||
# Create the query. | ||
my $query = $self->Get($objectNames, $filterClause, @parmList); | ||
# Set up a counter of the number of records read. | ||
my $fetched = 0; | ||
# Insure the counter has a value. | ||
if (!defined $count) { | ||
$count = 0; | ||
} | ||
# Loop through the records returned, extracting the fields. Note that if the | ||
# counter is non-zero, we stop when the number of records read hits the count. | ||
3340 | my @retVal = (); | my @retVal = (); |
3341 | while (($count == 0 || $fetched < $count) && (my $row = $query->Fetch())) { | # Determine the target entity for the relationship. This is whichever entity is not |
3342 | my @rowData = $row->Values($fields); | # the source entity. So, if the source entity is the FROM, we'll get the name of |
3343 | push @retVal, \@rowData; | # the TO, and vice versa. |
3344 | $fetched++; | my $relStructure = $self->_GetStructure($relationship); |
3345 | } | my $targetEntityType = ($relStructure->{from} eq $sourceEntity ? "to" : "from"); |
3346 | # Return the resulting list. | my $targetEntity = $relStructure->{$targetEntityType}; |
3347 | # Get the field table for the entity. | |
3348 | my $entityFields = $self->GetFieldTable($targetEntity); | |
3349 | # The field table is a hash. The hash key is the field name. The hash value is a structure. | |
3350 | # For the entity fields, the key aspect of the target structure is that the {relation} value | |
3351 | # must match the entity name. | |
3352 | my @fieldList = map { "$targetEntity($_)" } grep { $entityFields->{$_}->{relation} eq $targetEntity } | |
3353 | keys %{$entityFields}; | |
3354 | # Push the fields found onto the return variable. | |
3355 | push @retVal, sort @fieldList; | |
3356 | # Get the field table for the relationship. | |
3357 | my $relationshipFields = $self->GetFieldTable($relationship); | |
3358 | # Here we have a different rule. We want all the fields other than "from-link" and "to-link". | |
3359 | # This may end up being an empty set. | |
3360 | my @fieldList2 = map { "$relationship($_)" } grep { $_ ne "from-link" && $_ ne "to-link" } | |
3361 | keys %{$relationshipFields}; | |
3362 | # Push these onto the return list. | |
3363 | push @retVal, sort @fieldList2; | |
3364 | # Return the result. | |
3365 | return @retVal; | return @retVal; |
3366 | } | } |
3367 | ||
3368 | =head3 EstimateRowSize | =head3 FindColumn |
3369 | ||
3370 | C<< my $rowSize = $erdb->EstimateRowSize($relName); >> | C<< my $colIndex = ERDB::FindColumn($headerLine, $columnIdentifier); >> |
3371 | ||
3372 | Estimate the row size of the specified relation. The estimated row size is computed by adding | Return the location a desired column in a data mining header line. The data |
3373 | up the average length for each data type. | mining header line is a tab-separated list of column names. The column |
3374 | identifier is either the numerical index of a column or the actual column | |
3375 | name. | |
3376 | ||
3377 | =over 4 | =over 4 |
3378 | ||
3379 | =item relName | =item headerLine |
3380 | ||
3381 | Name of the relation whose estimated row size is desired. | The header line from a data mining command, which consists of a tab-separated |
3382 | list of column names. | |
3383 | ||
3384 | =item columnIdentifier | |
3385 | ||
3386 | Either the ordinal number of the desired column (1-based), or the name of the | |
3387 | desired column. | |
3388 | ||
3389 | =item RETURN | =item RETURN |
3390 | ||
3391 | Returns an estimate of the row size for the specified relation. | Returns the array index (0-based) of the desired column. |
3392 | ||
3393 | =back | =back |
3394 | ||
3395 | =cut | =cut |
3396 | #: Return Type $; | |
3397 | sub EstimateRowSize { | sub FindColumn { |
3398 | # Get the parameters. | # Get the parameters. |
3399 | my ($self, $relName) = @_; | my ($headerLine, $columnIdentifier) = @_; |
3400 | # Declare the return variable. | # Declare the return variable. |
3401 | my $retVal = 0; | my $retVal; |
3402 | # Find the relation descriptor. | # Split the header line into column names. |
3403 | my $relation = $self->_FindRelation($relName); | my @headers = ParseColumns($headerLine); |
3404 | # Get the list of fields. | # Determine whether we have a number or a name. |
3405 | for my $fieldData (@{$relation->{Fields}}) { | if ($columnIdentifier =~ /^\d+$/) { |
3406 | # Get the field type and add its length. | # Here we have a number. Subtract 1 and validate the result. |
3407 | my $fieldLen = $TypeTable{$fieldData->{type}}->{avgLen}; | $retVal = $columnIdentifier - 1; |
3408 | $retVal += $fieldLen; | if ($retVal < 0 || $retVal > $#headers) { |
3409 | Confess("Invalid column identifer \"$columnIdentifier\": value out of range."); | |
3410 | } | |
3411 | } else { | |
3412 | # Here we have a name. We need to find it in the list. | |
3413 | for (my $i = 0; $i <= $#headers && ! defined($retVal); $i++) { | |
3414 | if ($headers[$i] eq $columnIdentifier) { | |
3415 | $retVal = $i; | |
3416 | } | |
3417 | } | |
3418 | if (! defined($retVal)) { | |
3419 | Confess("Invalid column identifier \"$columnIdentifier\": value not found."); | |
3420 | } | |
3421 | } | } |
3422 | # Return the result. | # Return the result. |
3423 | return $retVal; | return $retVal; |
3424 | } | } |
3425 | ||
3426 | =head2 Internal Utility Methods | =head3 ParseColumns |
3427 | ||
3428 | =head3 GetLoadStats | C<< my @columns = ERDB::ParseColumns($line); >> |
3429 | ||
3430 | Return a blank statistics object for use by the load methods. | Convert the specified data line to a list of columns. |
3431 | ||
3432 | This is a static method. | =over 4 |
3433 | ||
3434 | =item line | |
3435 | ||
3436 | A data mining input, consisting of a tab-separated list of columns terminated by a | |
3437 | new-line. | |
3438 | ||
3439 | =item RETURN | |
3440 | ||
3441 | Returns a list consisting of the column values. | |
3442 | ||
3443 | =back | |
3444 | ||
3445 | =cut | =cut |
3446 | ||
3447 | sub _GetLoadStats { | sub ParseColumns { |
3448 | return Stats->new('records'); | # Get the parameters. |
3449 | my ($line) = @_; | |
3450 | # Chop off the line-end. | |
3451 | chomp $line; | |
3452 | # Split it into a list. | |
3453 | my @retVal = split(/\t/, $line); | |
3454 | # Return the result. | |
3455 | return @retVal; | |
3456 | } | } |
3457 | ||
3458 | =head3 GenerateFields | =head2 Virtual Methods |
3459 | ||
3460 | Generate field values from a field structure and store in a specified table. The field names | =head3 CleanKeywords |
are first sorted by pass count, certain pre-defined fields are removed from the list, and | ||
then we rip through them evaluation the data generation string. Fields in the primary relation | ||
are stored as scalars; fields in secondary relations are stored as value lists. | ||
3461 | ||
3462 | This is a static method. | C<< my $cleanedString = $erdb->CleanKeywords($searchExpression); >> |
3463 | ||
3464 | Clean up a search expression or keyword list. This is a virtual method that may | |
3465 | be overridden by the subclass. The base-class method removes extra spaces | |
3466 | and converts everything to lower case. | |
3467 | ||
3468 | =over 4 | =over 4 |
3469 | ||
3470 | =item this | =item searchExpression |
3471 | ||
3472 | Hash table into which the field values should be placed. | Search expression or keyword list to clean. Note that a search expression may |
3473 | contain boolean operators which need to be preserved. This includes leading | |
3474 | minus signs. | |
3475 | ||
3476 | =item fields | =item RETURN |
3477 | ||
3478 | Field structure from which the field descriptors should be taken. | Cleaned expression or keyword list. |
3479 | ||
3480 | =item type | =back |
3481 | ||
3482 | =cut | |
3483 | ||
3484 | sub CleanKeywords { | |
3485 | # Get the parameters. | |
3486 | my ($self, $searchExpression) = @_; | |
3487 | # Lower-case the expression and copy it into the return variable. Note that we insure we | |
3488 | # don't accidentally end up with an undefined value. | |
3489 | my $retVal = lc($searchExpression || ""); | |
3490 | # Remove extra spaces. | |
3491 | $retVal =~ s/\s+/ /g; | |
3492 | $retVal =~ s/(^\s+)|(\s+$)//g; | |
3493 | # Return the result. | |
3494 | return $retVal; | |
3495 | } | |
3496 | ||
3497 | =head3 GetSourceObject | |
3498 | ||
3499 | Type name of the object whose fields are being generated. | C<< my $source = $erdb->GetSourceObject($entityName); >> |
3500 | ||
3501 | =item values (optional) | Return the object to be used in loading special attributes of the specified entity. The |
3502 | algorithm for loading special attributes is stored in the C<DataGen> elements of the | |
3503 | XML | |
3504 | ||
3505 | Reference to a value structure from which additional values can be taken. | =head2 Internal Utility Methods |
3506 | ||
3507 | =head3 _RelationMap | |
3508 | ||
3509 | C<< my @relationMap = _RelationMap($mappedNameHashRef, $mappedNameListRef); >> | |
3510 | ||
3511 | Create the relation map for an SQL query. The relation map is used by B<DBObject> | |
3512 | to determine how to interpret the results of the query. | |
3513 | ||
3514 | =over 4 | |
3515 | ||
3516 | =item mappedNameHashRef | |
3517 | ||
3518 | Reference to a hash that maps modified object names to real object names. | |
3519 | ||
3520 | =item from (optiona) | =item mappedNameListRef |
3521 | ||
3522 | Reference to the source entity instance if relationship data is being generated. | Reference to a list of modified object names in the order they appear in the |
3523 | SELECT list. | |
3524 | ||
3525 | =item to (optional) | =item RETURN |
3526 | ||
3527 | Reference to the target entity instance if relationship data is being generated. | Returns a list of 2-tuples. Each tuple consists of an object name as used in the |
3528 | query followed by the actual name of that object. This enables the B<DBObject> to | |
3529 | determine the order of the tables in the query and which object name belongs to each | |
3530 | mapped object name. Most of the time these two values are the same; however, if a | |
3531 | relation occurs twice in the query, the relation name in the field list and WHERE | |
3532 | clause will use a mapped name (generally the actual relation name with a numeric | |
3533 | suffix) that does not match the actual relation name. | |
3534 | ||
3535 | =back | =back |
3536 | ||
3537 | =cut | =cut |
3538 | ||
3539 | sub _GenerateFields { | sub _RelationMap { |
3540 | # Get the parameters. | # Get the parameters. |
3541 | my ($this, $fields, $type, $values, $from, $to) = @_; | my ($mappedNameHashRef, $mappedNameListRef) = @_; |
3542 | # Sort the field names by pass number. | # Declare the return variable. |
3543 | my @fieldNames = sort { $fields->{$a}->{DataGen}->{pass} <=> $fields->{$b}->{DataGen}->{pass} } keys %{$fields}; | my @retVal = (); |
3544 | # Loop through the field names, generating data. | # Build the map. |
3545 | for my $name (@fieldNames) { | for my $mappedName (@{$mappedNameListRef}) { |
3546 | # Only proceed if this field needs to be generated. | push @retVal, [$mappedName, $mappedNameHashRef->{$mappedName}]; |
3547 | if (!exists $this->{$name}) { | } |
3548 | # Get this field's data generation descriptor. | # Return it. |
3549 | my $fieldDescriptor = $fields->{$name}; | return @retVal; |
3550 | my $data = $fieldDescriptor->{DataGen}; | } |
3551 | # Get the code to generate the field value. | |
3552 | my $codeString = $data->{content}; | |
3553 | # Determine whether or not this field is in the primary relation. | =head3 _SetupSQL |
3554 | if ($fieldDescriptor->{relation} eq $type) { | |
3555 | # Here we have a primary relation field. Store the field value as | Process a list of object names and a filter clause so that they can be used to |
3556 | # a scalar. | build an SQL statement. This method takes in a reference to a list of object names |
3557 | $this->{$name} = eval($codeString); | and a filter clause. It will return a corrected filter clause, a list of mapped |
3558 | names and the mapped name hash. | |
3559 | ||
3560 | This is an instance method. | |
3561 | ||
3562 | =over 4 | |
3563 | ||
3564 | =item objectNames | |
3565 | ||
3566 | Reference to a list of the object names to be included in the query. | |
3567 | ||
3568 | =item filterClause | |
3569 | ||
3570 | A string containing the WHERE clause for the query (without the C<WHERE>) and also | |
3571 | optionally the C<ORDER BY> and C<LIMIT> clauses. | |
3572 | ||
3573 | =item matchClause | |
3574 | ||
3575 | An optional full-text search clause. If specified, it will be inserted at the | |
3576 | front of the WHERE clause. It should already be SQL-formatted; that is, the | |
3577 | field names should be in the form I<table>C<.>I<fieldName>. | |
3578 | ||
3579 | =item RETURN | |
3580 | ||
3581 | Returns a three-element list. The first element is the SQL statement suffix, beginning | |
3582 | with the FROM clause. The second element is a reference to a list of the names to be | |
3583 | used in retrieving the fields. The third element is a hash mapping the names to the | |
3584 | objects they represent. | |
3585 | ||
3586 | =back | |
3587 | ||
3588 | =cut | |
3589 | ||
3590 | sub _SetupSQL { | |
3591 | my ($self, $objectNames, $filterClause, $matchClause) = @_; | |
3592 | # Adjust the list of object names to account for multiple occurrences of the | |
3593 | # same object. We start with a hash table keyed on object name that will | |
3594 | # return the object suffix. The first time an object is encountered it will | |
3595 | # not be found in the hash. The next time the hash will map the object name | |
3596 | # to 2, then 3, and so forth. | |
3597 | my %objectHash = (); | |
3598 | # This list will contain the object names as they are to appear in the | |
3599 | # FROM list. | |
3600 | my @fromList = (); | |
3601 | # This list contains the suffixed object name for each object. It is exactly | |
3602 | # parallel to the list in the $objectNames parameter. | |
3603 | my @mappedNameList = (); | |
3604 | # Finally, this hash translates from a mapped name to its original object name. | |
3605 | my %mappedNameHash = (); | |
3606 | # Now we create the lists. Note that for every single name we push something into | |
3607 | # @fromList and @mappedNameList. This insures that those two arrays are exactly | |
3608 | # parallel to $objectNames. | |
3609 | for my $objectName (@{$objectNames}) { | |
3610 | # Get the next suffix for this object. | |
3611 | my $suffix = $objectHash{$objectName}; | |
3612 | if (! $suffix) { | |
3613 | # Here we are seeing the object for the first time. The object name | |
3614 | # is used as is. | |
3615 | push @mappedNameList, $objectName; | |
3616 | push @fromList, $objectName; | |
3617 | $mappedNameHash{$objectName} = $objectName; | |
3618 | # Denote the next suffix will be 2. | |
3619 | $objectHash{$objectName} = 2; | |
3620 | } else { | |
3621 | # Here we've seen the object before. We construct a new name using | |
3622 | # the suffix from the hash and update the hash. | |
3623 | my $mappedName = "$objectName$suffix"; | |
3624 | $objectHash{$objectName} = $suffix + 1; | |
3625 | # The FROM list has the object name followed by the mapped name. This | |
3626 | # tells SQL it's still the same table, but we're using a different name | |
3627 | # for it to avoid confusion. | |
3628 | push @fromList, "$objectName $mappedName"; | |
3629 | # The mapped-name list contains the real mapped name. | |
3630 | push @mappedNameList, $mappedName; | |
3631 | # Finally, enable us to get back from the mapped name to the object name. | |
3632 | $mappedNameHash{$mappedName} = $objectName; | |
3633 | } | |
3634 | } | |
3635 | # Begin the SELECT suffix. It starts with | |
3636 | # | |
3637 | # FROM name1, name2, ... nameN | |
3638 | # | |
3639 | my $suffix = "FROM " . join(', ', @fromList); | |
3640 | # Now for the WHERE. First, we need a place for the filter string. | |
3641 | my $filterString = ""; | |
3642 | # We will also keep a list of conditions to add to the WHERE clause in order to link | |
3643 | # entities and relationships as well as primary relations to secondary ones. | |
3644 | my @joinWhere = (); | |
3645 | # Check for a filter clause. | |
3646 | if ($filterClause) { | |
3647 | # Here we have one, so we convert its field names and add it to the query. First, | |
3648 | # We create a copy of the filter string we can work with. | |
3649 | $filterString = $filterClause; | |
3650 | # Next, we sort the object names by length. This helps protect us from finding | |
3651 | # object names inside other object names when we're doing our search and replace. | |
3652 | my @sortedNames = sort { length($b) - length($a) } @mappedNameList; | |
3653 | # The final preparatory step is to create a hash table of relation names. The | |
3654 | # table begins with the relation names already in the SELECT command. We may | |
3655 | # need to add relations later if there is filtering on a field in a secondary | |
3656 | # relation. The secondary relations are the ones that contain multiply- | |
3657 | # occurring or optional fields. | |
3658 | my %fromNames = map { $_ => 1 } @sortedNames; | |
3659 | # We are ready to begin. We loop through the object names, replacing each | |
3660 | # object name's field references by the corresponding SQL field reference. | |
3661 | # Along the way, if we find a secondary relation, we will need to add it | |
3662 | # to the FROM clause. | |
3663 | for my $mappedName (@sortedNames) { | |
3664 | # Get the length of the object name plus 2. This is the value we add to the | |
3665 | # size of the field name to determine the size of the field reference as a | |
3666 | # whole. | |
3667 | my $nameLength = 2 + length $mappedName; | |
3668 | # Get the real object name for this mapped name. | |
3669 | my $objectName = $mappedNameHash{$mappedName}; | |
3670 | Trace("Processing $mappedName for object $objectName.") if T(4); | |
3671 | # Get the object's field list. | |
3672 | my $fieldList = $self->GetFieldTable($objectName); | |
3673 | # Find the field references for this object. | |
3674 | while ($filterString =~ m/$mappedName\(([^)]*)\)/g) { | |
3675 | # At this point, $1 contains the field name, and the current position | |
3676 | # is set immediately after the final parenthesis. We pull out the name of | |
3677 | # the field and the position and length of the field reference as a whole. | |
3678 | my $fieldName = $1; | |
3679 | my $len = $nameLength + length $fieldName; | |
3680 | my $pos = pos($filterString) - $len; | |
3681 | # Insure the field exists. | |
3682 | if (!exists $fieldList->{$fieldName}) { | |
3683 | Confess("Field $fieldName not found for object $objectName."); | |
3684 | } else { | |
3685 | Trace("Processing $fieldName at position $pos.") if T(4); | |
3686 | # Get the field's relation. | |
3687 | my $relationName = $fieldList->{$fieldName}->{relation}; | |
3688 | # Now we have a secondary relation. We need to insure it matches the | |
3689 | # mapped name of the primary relation. First we peel off the suffix | |
3690 | # from the mapped name. | |
3691 | my $mappingSuffix = substr $mappedName, length($objectName); | |
3692 | # Put the mapping suffix onto the relation name to get the | |
3693 | # mapped relation name. | |
3694 | my $mappedRelationName = "$relationName$mappingSuffix"; | |
3695 | # Insure the relation is in the FROM clause. | |
3696 | if (!exists $fromNames{$mappedRelationName}) { | |
3697 | # Add the relation to the FROM clause. | |
3698 | if ($mappedRelationName eq $relationName) { | |
3699 | # The name is un-mapped, so we add it without | |
3700 | # any frills. | |
3701 | $suffix .= ", $relationName"; | |
3702 | push @joinWhere, "$objectName.id = $relationName.id"; | |
3703 | } else { | |
3704 | # Here we have a mapping situation. | |
3705 | $suffix .= ", $relationName $mappedRelationName"; | |
3706 | push @joinWhere, "$mappedRelationName.id = $mappedName.id"; | |
3707 | } | |
3708 | # Denote we have this relation available for future fields. | |
3709 | $fromNames{$mappedRelationName} = 1; | |
3710 | } | |
3711 | # Form an SQL field reference from the relation name and the field name. | |
3712 | my $sqlReference = "$mappedRelationName." . _FixName($fieldName); | |
3713 | # Put it into the filter string in place of the old value. | |
3714 | substr($filterString, $pos, $len) = $sqlReference; | |
3715 | # Reposition the search. | |
3716 | pos $filterString = $pos + length $sqlReference; | |
3717 | } | |
3718 | } | |
3719 | } | |
3720 | } | |
3721 | # The next step is to join the objects together. We only need to do this if there | |
3722 | # is more than one object in the object list. We start with the first object and | |
3723 | # run through the objects after it. Note also that we make a safety copy of the | |
3724 | # list before running through it, because we shift off the first object before | |
3725 | # processing the rest. | |
3726 | my @mappedObjectList = @mappedNameList; | |
3727 | my $lastMappedObject = shift @mappedObjectList; | |
3728 | # Get the join table. | |
3729 | my $joinTable = $self->{_metaData}->{Joins}; | |
3730 | # Loop through the object list. | |
3731 | for my $thisMappedObject (@mappedObjectList) { | |
3732 | # Look for a join using the real object names. | |
3733 | my $lastObject = $mappedNameHash{$lastMappedObject}; | |
3734 | my $thisObject = $mappedNameHash{$thisMappedObject}; | |
3735 | my $joinKey = "$lastObject/$thisObject"; | |
3736 | if (!exists $joinTable->{$joinKey}) { | |
3737 | # Here there's no join, so we throw an error. | |
3738 | Confess("No join exists to connect from $lastMappedObject to $thisMappedObject."); | |
3739 | } else { | } else { |
3740 | # Here we have a secondary relation field. Create a null list | # Get the join clause. |
3741 | # and push the desired number of field values onto it. | my $unMappedJoin = $joinTable->{$joinKey}; |
3742 | my @fieldValues = (); | # Fix the names. |
3743 | my $count = IntGen(0,$data->{testCount}); | $unMappedJoin =~ s/$lastObject/$lastMappedObject/; |
3744 | for (my $i = 0; $i < $count; $i++) { | $unMappedJoin =~ s/$thisObject/$thisMappedObject/; |
3745 | my $newValue = eval($codeString); | push @joinWhere, $unMappedJoin; |
3746 | push @fieldValues, $newValue; | # Save this object as the last object for the next iteration. |
3747 | $lastMappedObject = $thisMappedObject; | |
3748 | } | |
3749 | } | |
3750 | # Now we need to handle the whole ORDER BY / LIMIT thing. The important part | |
3751 | # here is we want the filter clause to be empty if there's no WHERE filter. | |
3752 | # We'll put the ORDER BY / LIMIT clauses in the following variable. | |
3753 | my $orderClause = ""; | |
3754 | # This is only necessary if we have a filter string in which the ORDER BY | |
3755 | # and LIMIT clauses can live. | |
3756 | if ($filterString) { | |
3757 | # Locate the ORDER BY or LIMIT verbs (if any). We use a non-greedy | |
3758 | # operator so that we find the first occurrence of either verb. | |
3759 | if ($filterString =~ m/^(.*?)\s*(ORDER BY|LIMIT)/g) { | |
3760 | # Here we have an ORDER BY or LIMIT verb. Split it off of the filter string. | |
3761 | my $pos = pos $filterString; | |
3762 | $orderClause = $2 . substr($filterString, $pos); | |
3763 | $filterString = $1; | |
3764 | } | |
3765 | } | |
3766 | # All the things that are supposed to be in the WHERE clause of the | |
3767 | # SELECT command need to be put into @joinWhere so we can string them | |
3768 | # together. We begin with the match clause. This is important, | |
3769 | # because the match clause's parameter mark must precede any parameter | |
3770 | # marks in the filter string. | |
3771 | if ($matchClause) { | |
3772 | push @joinWhere, $matchClause; | |
3773 | } | |
3774 | # Add the filter string. We put it in parentheses to avoid operator | |
3775 | # precedence problems with the match clause or the joins. | |
3776 | if ($filterString) { | |
3777 | Trace("Filter string is \"$filterString\".") if T(4); | |
3778 | push @joinWhere, "($filterString)"; | |
3779 | } | |
3780 | # String it all together into a big filter clause. | |
3781 | if (@joinWhere) { | |
3782 | $suffix .= " WHERE " . join(' AND ', @joinWhere); | |
3783 | } | } |
3784 | # Store the value list in the main hash. | # Add the sort or limit clause (if any). |
3785 | $this->{$name} = \@fieldValues; | if ($orderClause) { |
3786 | $suffix .= " $orderClause"; | |
3787 | } | } |
3788 | # Return the suffix, the mapped name list, and the mapped name hash. | |
3789 | return ($suffix, \@mappedNameList, \%mappedNameHash); | |
3790 | } | } |
3791 | ||
3792 | =head3 _GetStatementHandle | |
3793 | ||
3794 | This method will prepare and execute an SQL query, returning the statement handle. | |
3795 | The main reason for doing this here is so that everybody who does SQL queries gets | |
3796 | the benefit of tracing. | |
3797 | ||
3798 | This is an instance method. | |
3799 | ||
3800 | =over 4 | |
3801 | ||
3802 | =item command | |
3803 | ||
3804 | Command to prepare and execute. | |
3805 | ||
3806 | =item params | |
3807 | ||
3808 | Reference to a list of the values to be substituted in for the parameter marks. | |
3809 | ||
3810 | =item RETURN | |
3811 | ||
3812 | Returns a prepared and executed statement handle from which the caller can extract | |
3813 | results. | |
3814 | ||
3815 | =back | |
3816 | ||
3817 | =cut | |
3818 | ||
3819 | sub _GetStatementHandle { | |
3820 | # Get the parameters. | |
3821 | my ($self, $command, $params) = @_; | |
3822 | # Trace the query. | |
3823 | Trace("SQL query: $command") if T(SQL => 3); | |
3824 | Trace("PARMS: '" . (join "', '", @{$params}) . "'") if (T(SQL => 4) && (@{$params} > 0)); | |
3825 | # Get the database handle. | |
3826 | my $dbh = $self->{_dbh}; | |
3827 | # Prepare the command. | |
3828 | my $sth = $dbh->prepare_command($command); | |
3829 | # Execute it with the parameters bound in. | |
3830 | $sth->execute(@{$params}) || Confess("SELECT error: " . $sth->errstr()); | |
3831 | # Return the statement handle. | |
3832 | return $sth; | |
3833 | } | } |
3834 | ||
3835 | =head3 _GetLoadStats | |
3836 | ||
3837 | Return a blank statistics object for use by the load methods. | |
3838 | ||
3839 | This is a static method. | |
3840 | ||
3841 | =cut | |
3842 | ||
3843 | sub _GetLoadStats{ | |
3844 | return Stats->new(); | |
3845 | } | } |
3846 | ||
3847 | =head3 DumpRelation | =head3 _DumpRelation |
3848 | ||
3849 | Dump the specified relation's to the specified output file in tab-delimited format. | Dump the specified relation to the specified output file in tab-delimited format. |
3850 | ||
3851 | This is an instance method. | This is an instance method. |
3852 | ||
# | Line 1811 | Line 3894 |
3894 | close DTXOUT; | close DTXOUT; |
3895 | } | } |
3896 | ||
3897 | =head3 GetStructure | =head3 _GetStructure |
3898 | ||
3899 | Get the data structure for a specified entity or relationship. | Get the data structure for a specified entity or relationship. |
3900 | ||
# | Line 1850 | Line 3933 |
3933 | return $retVal; | return $retVal; |
3934 | } | } |
3935 | ||
3936 | =head3 GetRelationTable | |
3937 | ||
3938 | =head3 _GetRelationTable | |
3939 | ||
3940 | Get the list of relations for a specified entity or relationship. | Get the list of relations for a specified entity or relationship. |
3941 | ||
# | Line 1879 | Line 3964 |
3964 | return $objectData->{Relations}; | return $objectData->{Relations}; |
3965 | } | } |
3966 | ||
3967 | =head3 GetFieldTable | =head3 _ValidateFieldNames |
Get the field structure for a specified entity or relationship. | ||
This is an instance method. | ||
=over 4 | ||
=item objectName | ||
Name of the desired entity or relationship. | ||
=item RETURN | ||
The table containing the field descriptors for the specified object. | ||
=back | ||
=cut | ||
sub _GetFieldTable { | ||
# Get the parameters. | ||
my ($self, $objectName) = @_; | ||
# Get the descriptor from the metadata. | ||
my $objectData = $self->_GetStructure($objectName); | ||
# Return the object's field table. | ||
return $objectData->{Fields}; | ||
} | ||
=head3 ValidateFieldNames | ||
3968 | ||
3969 | Determine whether or not the field names are valid. A description of the problems with the names | Determine whether or not the field names are valid. A description of the problems with the names |
3970 | will be written to the standard error output. If there is an error, this method will abort. This is | will be written to the standard error output. If there is an error, this method will abort. This is |
# | Line 1935 | Line 3991 |
3991 | for my $object (values %{$metadata->{$section}}) { | for my $object (values %{$metadata->{$section}}) { |
3992 | # Loop through the object's fields. | # Loop through the object's fields. |
3993 | for my $fieldName (keys %{$object->{Fields}}) { | for my $fieldName (keys %{$object->{Fields}}) { |
3994 | # Now we make some initial validations. | # If this field name is invalid, set the return value to zero |
3995 | if ($fieldName =~ /--/) { | # so we know we encountered an error. |
3996 | # Here we have a doubled minus sign. | if (! ValidateFieldName($fieldName)) { |
print STDERR "Field name $fieldName has a doubled hyphen.\n"; | ||
$retVal = 0; | ||
} elsif ($fieldName !~ /^[A-Za-z]/) { | ||
# Here the field name is missing the initial letter. | ||
print STDERR "Field name $fieldName does not begin with a letter.\n"; | ||
$retVal = 0; | ||
} else { | ||
# Strip out the minus signs. Everything remaining must be a letter | ||
# or digit. | ||
my $strippedName = $fieldName; | ||
$strippedName =~ s/-//g; | ||
if ($strippedName !~ /^[A-Za-z0-9]+$/) { | ||
print STDERR "Field name $fieldName contains illegal characters.\n"; | ||
3997 | $retVal = 0; | $retVal = 0; |
3998 | } | } |
3999 | } | } |
4000 | } | } |
4001 | } | } |
} | ||
4002 | # If an error was found, fail. | # If an error was found, fail. |
4003 | if ($retVal == 0) { | if ($retVal == 0) { |
4004 | Confess("Errors found in field names."); | Confess("Errors found in field names."); |
4005 | } | } |
4006 | } | } |
4007 | ||
4008 | =head3 LoadRelation | =head3 _LoadRelation |
4009 | ||
4010 | Load a relation from the data in a tab-delimited disk file. The load will only take place if a disk | Load a relation from the data in a tab-delimited disk file. The load will only take place if a disk |
4011 | file with the same name as the relation exists in the specified directory. | file with the same name as the relation exists in the specified directory. |
# | Line 2023 | Line 4065 |
4065 | return $retVal; | return $retVal; |
4066 | } | } |
4067 | ||
4068 | =head3 LoadMetaData | |
4069 | =head3 _LoadMetaData | |
4070 | ||
4071 | This method loads the data describing this database from an XML file into a metadata structure. | This method loads the data describing this database from an XML file into a metadata structure. |
4072 | The resulting structure is a set of nested hash tables containing all the information needed to | The resulting structure is a set of nested hash tables containing all the information needed to |
# | Line 2048 | Line 4091 |
4091 | sub _LoadMetaData { | sub _LoadMetaData { |
4092 | # Get the parameters. | # Get the parameters. |
4093 | my ($filename) = @_; | my ($filename) = @_; |
4094 | Trace("Reading Sprout DBD from $filename.") if T(2); | Trace("Reading DBD from $filename.") if T(2); |
4095 | # Slurp the XML file into a variable. Extensive use of options is used to insure we | # Slurp the XML file into a variable. Extensive use of options is used to insure we |
4096 | # get the exact structure we want. | # get the exact structure we want. |
4097 | my $metadata = XML::Simple::XMLin($filename, | my $metadata = ReadMetaXML($filename); |
GroupTags => { Relationships => 'Relationship', | ||
Entities => 'Entity', | ||
Fields => 'Field', | ||
Indexes => 'Index', | ||
  |