[Bio] / Sprout / ERDB.pm Repository:
ViewVC logotype

Diff of /Sprout/ERDB.pm

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 1.11, Thu Jun 23 21:24:49 2005 UTC revision 1.76, Wed Nov 15 12:08:26 2006 UTC
# Line 2  Line 2 
2    
3      use strict;      use strict;
4      use Tracer;      use Tracer;
5      use DBKernel;      use DBrtns;
6      use Data::Dumper;      use Data::Dumper;
7      use XML::Simple;      use XML::Simple;
8      use DBQuery;      use DBQuery;
9      use DBObject;      use DBObject;
10      use Stats;      use Stats;
11      use Time::HiRes qw(gettimeofday);      use Time::HiRes qw(gettimeofday);
12        use Digest::MD5 qw(md5_base64);
13        use FIG;
14        use CGI;
15    
16  =head1 Entity-Relationship Database Package  =head1 Entity-Relationship Database Package
17    
# Line 57  Line 60 
60  B<start-position>, which indicates where in the contig that the sequence begins. This attribute  B<start-position>, which indicates where in the contig that the sequence begins. This attribute
61  is implemented as the C<start_position> field in the C<IsMadeUpOf> relation.  is implemented as the C<start_position> field in the C<IsMadeUpOf> relation.
62    
63  The database itself is described by an XML file using the F<ERDatabase.xsd> schema. In addition to  The database itself is described by an XML file. In addition to all the data required to define
64  all the data required to define the entities, relationships, and attributes, the schema provides  the entities, relationships, and attributes, the schema provides space for notes describing
65  space for notes describing the data and what it means. These notes are used by L</ShowMetaData>  the data and what it means. These notes are used by L</ShowMetaData> to generate documentation
66  to generate documentation for the database.  for the database.
67    
68    Special support is provided for text searching. An entity field can be marked as <em>searchable</em>,
69    in which case it will be used to generate a text search index in which the user searches for words
70    in the field instead of a particular field value.
71    
72  Finally, every entity and relationship object has a flag indicating if it is new or old. The object  Finally, every entity and relationship object has a flag indicating if it is new or old. The object
73  is considered I<old> if it was loaded by the L</LoadTables> method. It is considered I<new> if it  is considered I<old> if it was loaded by the L</LoadTables> method. It is considered I<new> if it
74  was inserted by the L</InsertObject> method.  was inserted by the L</InsertObject> method.
75    
 To facilitate testing, the ERDB module supports automatic generation of test data. This process  
 is described in the L</GenerateEntity> and L</GenerateConnection> methods, though it is not yet  
 fully implemented.  
   
76  =head2 XML Database Description  =head2 XML Database Description
77    
78  =head3 Data Types  =head3 Data Types
# Line 89  Line 92 
92    
93  32-bit signed integer  32-bit signed integer
94    
95    =item counter
96    
97    32-bit unsigned integer
98    
99  =item date  =item date
100    
101  64-bit unsigned integer, representing a PERL date/time value  64-bit unsigned integer, representing a PERL date/time value
# Line 108  Line 115 
115  compatability with certain database packages), but the only values supported are  compatability with certain database packages), but the only values supported are
116  0 and 1.  0 and 1.
117    
118    =item id-string
119    
120    variable-length string, maximum 25 characters
121    
122  =item key-string  =item key-string
123    
124  variable-length string, maximum 40 characters  variable-length string, maximum 40 characters
# Line 124  Line 135 
135    
136  variable-length string, maximum 255 characters  variable-length string, maximum 255 characters
137    
138    =item hash-string
139    
140    variable-length string, maximum 22 characters
141    
142  =back  =back
143    
144    The hash-string data type has a special meaning. The actual key passed into the loader will
145    be a string, but it will be digested into a 22-character MD5 code to save space. Although the
146    MD5 algorithm is not perfect, it is extremely unlikely two strings will have the same
147    digest. Therefore, it is presumed the keys will be unique. When the database is actually
148    in use, the hashed keys will be presented rather than the original values. For this reason,
149    they should not be used for entities where the key is meaningful.
150    
151  =head3 Global Tags  =head3 Global Tags
152    
153  The entire database definition must be inside a B<Database> tag. The display name of  The entire database definition must be inside a B<Database> tag. The display name of
# Line 169  Line 191 
191    
192  Name of the field. The field name should contain only letters, digits, and hyphens (C<->),  Name of the field. The field name should contain only letters, digits, and hyphens (C<->),
193  and the first character should be a letter. Most underlying databases are case-insensitive  and the first character should be a letter. Most underlying databases are case-insensitive
194  with the respect to field names, so a best practice is to use lower-case letters only.  with the respect to field names, so a best practice is to use lower-case letters only. Finally,
195    the name C<search-relevance> has special meaning for full-text searches and should not be
196    used as a field name.
197    
198  =item type  =item type
199    
# Line 188  Line 212 
212  entity, the fields without a relation attribute are said to belong to the  entity, the fields without a relation attribute are said to belong to the
213  I<primary relation>. This relation has the same name as the entity itself.  I<primary relation>. This relation has the same name as the entity itself.
214    
215    =item searchable
216    
217    If specified, then the field is a candidate for full-text searching. A single full-text
218    index will be created for each relation with at least one searchable field in it.
219    For best results, this option should only be used for string or text fields.
220    
221    =item special
222    
223    This attribute allows the subclass to assign special meaning for certain fields.
224    The interpretation is up to the subclass itself. Currently, only entity fields
225    can have this attribute.
226    
227  =back  =back
228    
229  =head3 Indexes  =head3 Indexes
230    
231  An entity can have multiple alternate indexes associated with it. The fields must  An entity can have multiple alternate indexes associated with it. The fields must
232  be from the primary relation. The alternate indexes assist in ordering results  all be from the same relation. The alternate indexes assist in ordering results
233  from a query. A relationship can have up to two indexes-- a I<to-index> and a  from a query. A relationship can have up to two indexes-- a I<to-index> and a
234  I<from-index>. These order the results when crossing the relationship. For  I<from-index>. These order the results when crossing the relationship. For
235  example, in the relationship C<HasContig> from C<Genome> to C<Contig>, the  example, in the relationship C<HasContig> from C<Genome> to C<Contig>, the
# Line 299  Line 335 
335    
336  # Table of information about our datatypes. "sqlType" is the corresponding SQL datatype string.  # Table of information about our datatypes. "sqlType" is the corresponding SQL datatype string.
337  # "maxLen" is the maximum permissible length of the incoming string data used to populate a field  # "maxLen" is the maximum permissible length of the incoming string data used to populate a field
338  # of the specified type. "dataGen" is PERL string that will be evaluated if no test data generation  # of the specified type. "avgLen" is the average byte length for estimating
339   #string is specified in the field definition.  # record sizes. "sort" is the key modifier for the sort command, "notes" is a type description,
340  my %TypeTable = ( char =>    { sqlType => 'CHAR(1)',            maxLen => 1,            dataGen => "StringGen('A')" },  # and "indexMod", if non-zero, is the number of characters to use when the field is specified in an
341                    int =>     { sqlType => 'INTEGER',            maxLen => 20,           dataGen => "IntGen(0, 99999999)" },  # index
342                    string =>  { sqlType => 'VARCHAR(255)',       maxLen => 255,          dataGen => "StringGen(IntGen(10,250))" },  my %TypeTable = ( char =>    { sqlType => 'CHAR(1)',            maxLen => 1,            avgLen =>   1, sort => "",
343                    text =>    { sqlType => 'TEXT',               maxLen => 1000000000,   dataGen => "StringGen(IntGen(80,1000))" },                                 indexMod =>   0, notes => "single ASCII character"},
344                    date =>    { sqlType => 'BIGINT',             maxLen => 80,           dataGen => "DateGen(-7, 7, IntGen(0,1400))" },                    int =>     { sqlType => 'INTEGER',            maxLen => 20,           avgLen =>   4, sort => "n",
345                    float =>   { sqlType => 'DOUBLE PRECISION',   maxLen => 40,           dataGen => "FloatGen(0.0, 100.0)" },                                 indexMod =>   0, notes => "signed 32-bit integer"},
346                    boolean => { sqlType => 'SMALLINT',           maxLen => 1,            dataGen => "IntGen(0, 1)" },                    counter => { sqlType => 'INTEGER UNSIGNED',   maxLen => 20,           avgLen =>   4, sort => "n",
347                                   indexMod =>   0, notes => "unsigned 32-bit integer"},
348                      string =>  { sqlType => 'VARCHAR(255)',       maxLen => 255,          avgLen => 100, sort => "",
349                                   indexMod =>   0, notes => "character string, 0 to 255 characters"},
350                      text =>    { sqlType => 'TEXT',               maxLen => 1000000000,   avgLen => 500, sort => "",
351                                   indexMod => 255, notes => "character string, nearly unlimited length, only first 255 characters are indexed"},
352                      date =>    { sqlType => 'BIGINT',             maxLen => 80,           avgLen =>   8, sort => "n",
353                                   indexMod =>   0, notes => "signed, 64-bit integer"},
354                      float =>   { sqlType => 'DOUBLE PRECISION',   maxLen => 40,           avgLen =>   8, sort => "g",
355                                   indexMod =>   0, notes => "64-bit double precision floating-point number"},
356                      boolean => { sqlType => 'SMALLINT',           maxLen => 1,            avgLen =>   1, sort => "n",
357                                   indexMod =>   0, notes => "boolean value: 0 if false, 1 if true"},
358                     'hash-string' =>
359                                 { sqlType => 'VARCHAR(22)',        maxLen => 22,           avgLen =>  22, sort => "",
360                                   indexMod =>   0, notes => "string stored in digested form, used for certain types of key fields"},
361                     'id-string' =>
362                                 { sqlType => 'VARCHAR(25)',        maxLen => 25,           avgLen =>  25, sort => "",
363                                   indexMod =>   0, notes => "character string, 0 to 25 characters"},
364                   'key-string' =>                   'key-string' =>
365                               { sqlType => 'VARCHAR(40)',        maxLen => 40,           dataGen => "StringGen(IntGen(10,40))" },                               { sqlType => 'VARCHAR(40)',        maxLen => 40,           avgLen =>  10, sort => "",
366                                   indexMod =>   0, notes => "character string, 0 to 40 characters"},
367                   'name-string' =>                   'name-string' =>
368                               { sqlType => 'VARCHAR(80)',        maxLen => 80,           dataGen => "StringGen(IntGen(10,80))" },                               { sqlType => 'VARCHAR(80)',        maxLen => 80,           avgLen =>  40, sort => "",
369                                   indexMod =>   0, notes => "character string, 0 to 80 characters"},
370                   'medium-string' =>                   'medium-string' =>
371                               { sqlType => 'VARCHAR(160)',       maxLen => 160,          dataGen => "StringGen(IntGen(10,160))" },                               { sqlType => 'VARCHAR(160)',       maxLen => 160,          avgLen =>  40, sort => "",
372                                   indexMod =>   0, notes => "character string, 0 to 160 characters"},
373                  );                  );
374    
375  # Table translating arities into natural language.  # Table translating arities into natural language.
# Line 322  Line 378 
378                     'MM' => 'many-to-many'                     'MM' => 'many-to-many'
379                   );                   );
380    
381  # Table for interpreting string patterns.  # Options for XML input and output.
382    
383    my %XmlOptions = (GroupTags =>  { Relationships => 'Relationship',
384                                      Entities => 'Entity',
385                                      Fields => 'Field',
386                                      Indexes => 'Index',
387                                      IndexFields => 'IndexField'
388                                    },
389                      KeyAttr =>    { Relationship => 'name',
390                                      Entity => 'name',
391                                      Field => 'name'
392                                    },
393                      SuppressEmpty => 1,
394                     );
395    
396  my %PictureTable = ( 'A' => "abcdefghijklmnopqrstuvwxyz",  my %XmlInOpts  = (
397                       '9' => "0123456789",                    ForceArray => ['Field', 'Index', 'IndexField'],
398                       'X' => "abcdefghijklmnopqrstuvwxyz0123456789",                    ForceContent => 1,
399                       'V' => "aeiou",                    NormalizeSpace => 2,
400                       'K' => "bcdfghjklmnoprstvwxyz"                   );
401    my %XmlOutOpts = (
402                      RootName => 'Database',
403                      XMLDecl => 1,
404                     );                     );
405    
406    
407  =head2 Public Methods  =head2 Public Methods
408    
409  =head3 new  =head3 new
# Line 369  Line 442 
442    
443  =head3 ShowMetaData  =head3 ShowMetaData
444    
445  C<< $database->ShowMetaData($fileName); >>  C<< $erdb->ShowMetaData($fileName); >>
446    
447  This method outputs a description of the database. This description can be used to help users create  This method outputs a description of the database. This description can be used to help users create
448  the data to be loaded into the relations.  the data to be loaded into the relations.
# Line 400  Line 473 
473      # Write the HTML heading stuff.      # Write the HTML heading stuff.
474      print HTMLOUT "<html>\n<head>\n<title>$title</title>\n";      print HTMLOUT "<html>\n<head>\n<title>$title</title>\n";
475      print HTMLOUT "</head>\n<body>\n";      print HTMLOUT "</head>\n<body>\n";
476        # Write the documentation.
477        print HTMLOUT $self->DisplayMetaData();
478        # Close the document.
479        print HTMLOUT "</body>\n</html>\n";
480        # Close the file.
481        close HTMLOUT;
482    }
483    
484    =head3 DisplayMetaData
485    
486    C<< my $html = $erdb->DisplayMetaData(); >>
487    
488    Return an HTML description of the database. This description can be used to help users create
489    the data to be loaded into the relations and form queries. The output is raw includable HTML
490    without any HEAD or BODY tags.
491    
492    =over 4
493    
494    =item filename
495    
496    The name of the output file.
497    
498    =back
499    
500    =cut
501    
502    sub DisplayMetaData {
503        # Get the parameters.
504        my ($self) = @_;
505        # Get the metadata and the title string.
506        my $metadata = $self->{_metaData};
507        # Get the title string.
508        my $title = $metadata->{Title};
509        # Get the entity and relationship lists.
510        my $entityList = $metadata->{Entities};
511        my $relationshipList = $metadata->{Relationships};
512        # Declare the return variable.
513        my $retVal = "";
514        # Open the output file.
515        Trace("Building MetaData table of contents.") if T(4);
516      # Here we do the table of contents. It starts as an unordered list of section names. Each      # Here we do the table of contents. It starts as an unordered list of section names. Each
517      # section contains an ordered list of entity or relationship subsections.      # section contains an ordered list of entity or relationship subsections.
518      print HTMLOUT "<ul>\n<li><a href=\"#EntitiesSection\">Entities</a>\n<ol>\n";      $retVal .= "<ul>\n<li><a href=\"#EntitiesSection\">Entities</a>\n<ol>\n";
519      # Loop through the Entities, displaying a list item for each.      # Loop through the Entities, displaying a list item for each.
520      foreach my $key (sort keys %{$entityList}) {      foreach my $key (sort keys %{$entityList}) {
521          # Display this item.          # Display this item.
522          print HTMLOUT "<li><a href=\"#$key\">$key</a></li>\n";          $retVal .= "<li><a href=\"#$key\">$key</a></li>\n";
523      }      }
524      # Close off the entity section and start the relationship section.      # Close off the entity section and start the relationship section.
525      print HTMLOUT "</ol></li>\n<li><a href=\"#RelationshipsSection\">Relationships</a>\n<ol>\n";      $retVal .= "</ol></li>\n<li><a href=\"#RelationshipsSection\">Relationships</a>\n<ol>\n";
526      # Loop through the Relationships.      # Loop through the Relationships.
527      foreach my $key (sort keys %{$relationshipList}) {      foreach my $key (sort keys %{$relationshipList}) {
528          # Display this item.          # Display this item.
529          my $relationshipTitle = _ComputeRelationshipSentence($key, $relationshipList->{$key});          my $relationshipTitle = _ComputeRelationshipSentence($key, $relationshipList->{$key});
530          print HTMLOUT "<li><a href=\"#$key\">$relationshipTitle</a></li>\n";          $retVal .= "<li><a href=\"#$key\">$relationshipTitle</a></li>\n";
531      }      }
532      # Close off the relationship section and list the join table section.      # Close off the relationship section and list the join table section.
533      print HTMLOUT "</ol></li>\n<li><a href=\"#JoinTable\">Join Table</a></li>\n";      $retVal .= "</ol></li>\n<li><a href=\"#JoinTable\">Join Table</a></li>\n";
534      # Close off the table of contents itself.      # Close off the table of contents itself.
535      print HTMLOUT "</ul>\n";      $retVal .=  "</ul>\n";
536      # Now we start with the actual data. Denote we're starting the entity section.      # Now we start with the actual data. Denote we're starting the entity section.
537      print HTMLOUT "<a name=\"EntitiesSection\"></a><h2>Entities</h2>\n";      $retVal .= "<a name=\"EntitiesSection\"></a><h2>Entities</h2>\n";
538      # Loop through the entities.      # Loop through the entities.
539      for my $key (sort keys %{$entityList}) {      for my $key (sort keys %{$entityList}) {
540          Trace("Building MetaData entry for $key entity.") if T(4);          Trace("Building MetaData entry for $key entity.") if T(4);
541          # Create the entity header. It contains a bookmark and the entity name.          # Create the entity header. It contains a bookmark and the entity name.
542          print HTMLOUT "<a name=\"$key\"></a><h3>$key</h3>\n";          $retVal .= "<a name=\"$key\"></a><h3>$key</h3>\n";
543          # Get the entity data.          # Get the entity data.
544          my $entityData = $entityList->{$key};          my $entityData = $entityList->{$key};
545          # If there's descriptive text, display it.          # If there's descriptive text, display it.
546          if (my $notes = $entityData->{Notes}) {          if (my $notes = $entityData->{Notes}) {
547              print HTMLOUT "<p>" . _HTMLNote($notes->{content}) . "</p>\n";              $retVal .= "<p>" . HTMLNote($notes->{content}) . "</p>\n";
548          }          }
549          # Now we want a list of the entity's relationships. First, we set up the relationship subsection.          # Now we want a list of the entity's relationships. First, we set up the relationship subsection.
550          print HTMLOUT "<h4>Relationships for <b>$key</b></h4>\n<ul>\n";          $retVal .= "<h4>Relationships for <b>$key</b></h4>\n<ul>\n";
551          # Loop through the relationships.          # Loop through the relationships.
552          for my $relationship (sort keys %{$relationshipList}) {          for my $relationship (sort keys %{$relationshipList}) {
553              # Get the relationship data.              # Get the relationship data.
# Line 444  Line 557 
557                  # Get the relationship sentence and append the arity.                  # Get the relationship sentence and append the arity.
558                  my $relationshipDescription = _ComputeRelationshipSentence($relationship, $relationshipStructure);                  my $relationshipDescription = _ComputeRelationshipSentence($relationship, $relationshipStructure);
559                  # Display the relationship data.                  # Display the relationship data.
560                  print HTMLOUT "<li><a href=\"#$relationship\">$relationshipDescription</a></li>\n";                  $retVal .= "<li><a href=\"#$relationship\">$relationshipDescription</a></li>\n";
561              }              }
562          }          }
563          # Close off the relationship list.          # Close off the relationship list.
564          print HTMLOUT "</ul>\n";          $retVal .= "</ul>\n";
565          # Get the entity's relations.          # Get the entity's relations.
566          my $relationList = $entityData->{Relations};          my $relationList = $entityData->{Relations};
567          # Create a header for the relation subsection.          # Create a header for the relation subsection.
568          print HTMLOUT "<h4>Relations for <b>$key</b></h4>\n";          $retVal .= "<h4>Relations for <b>$key</b></h4>\n";
569          # Loop through the relations, displaying them.          # Loop through the relations, displaying them.
570          for my $relation (sort keys %{$relationList}) {          for my $relation (sort keys %{$relationList}) {
571              my $htmlString = _ShowRelationTable($relation, $relationList->{$relation});              my $htmlString = _ShowRelationTable($relation, $relationList->{$relation});
572              print HTMLOUT $htmlString;              $retVal .= $htmlString;
573          }          }
574      }      }
575      # Denote we're starting the relationship section.      # Denote we're starting the relationship section.
576      print HTMLOUT "<a name=\"RelationshipsSection\"></a><h2>Relationships</h2>\n";      $retVal .= "<a name=\"RelationshipsSection\"></a><h2>Relationships</h2>\n";
577      # Loop through the relationships.      # Loop through the relationships.
578      for my $key (sort keys %{$relationshipList}) {      for my $key (sort keys %{$relationshipList}) {
579          Trace("Building MetaData entry for $key relationship.") if T(4);          Trace("Building MetaData entry for $key relationship.") if T(4);
# Line 468  Line 581 
581          my $relationshipStructure = $relationshipList->{$key};          my $relationshipStructure = $relationshipList->{$key};
582          # Create the relationship header.          # Create the relationship header.
583          my $headerText = _ComputeRelationshipHeading($key, $relationshipStructure);          my $headerText = _ComputeRelationshipHeading($key, $relationshipStructure);
584          print HTMLOUT "<h3><a name=\"$key\"></a>$headerText</h3>\n";          $retVal .= "<h3><a name=\"$key\"></a>$headerText</h3>\n";
585          # Get the entity names.          # Get the entity names.
586          my $fromEntity = $relationshipStructure->{from};          my $fromEntity = $relationshipStructure->{from};
587          my $toEntity = $relationshipStructure->{to};          my $toEntity = $relationshipStructure->{to};
# Line 478  Line 591 
591          # since both sentences will say the same thing.          # since both sentences will say the same thing.
592          my $arity = $relationshipStructure->{arity};          my $arity = $relationshipStructure->{arity};
593          if ($arity eq "11") {          if ($arity eq "11") {
594              print HTMLOUT "<p>Each <b>$fromEntity</b> relates to at most one <b>$toEntity</b>.\n";              $retVal .= "<p>Each <b>$fromEntity</b> relates to at most one <b>$toEntity</b>.\n";
595          } else {          } else {
596              print HTMLOUT "<p>Each <b>$fromEntity</b> relates to multiple <b>$toEntity</b>s.\n";              $retVal .= "<p>Each <b>$fromEntity</b> relates to multiple <b>$toEntity</b>s.\n";
597              if ($arity eq "MM" && $fromEntity ne $toEntity) {              if ($arity eq "MM" && $fromEntity ne $toEntity) {
598                  print HTMLOUT "Each <b>$toEntity</b> relates to multiple <b>$fromEntity</b>s.\n";                  $retVal .= "Each <b>$toEntity</b> relates to multiple <b>$fromEntity</b>s.\n";
599              }              }
600          }          }
601          print HTMLOUT "</p>\n";          $retVal .= "</p>\n";
602          # If there are notes on this relationship, display them.          # If there are notes on this relationship, display them.
603          if (my $notes = $relationshipStructure->{Notes}) {          if (my $notes = $relationshipStructure->{Notes}) {
604              print HTMLOUT "<p>" . _HTMLNote($notes->{content}) . "</p>\n";              $retVal .= "<p>" . HTMLNote($notes->{content}) . "</p>\n";
605          }          }
606          # Generate the relationship's relation table.          # Generate the relationship's relation table.
607          my $htmlString = _ShowRelationTable($key, $relationshipStructure->{Relations}->{$key});          my $htmlString = _ShowRelationTable($key, $relationshipStructure->{Relations}->{$key});
608          print HTMLOUT $htmlString;          $retVal .= $htmlString;
609      }      }
610      Trace("Building MetaData join table.") if T(4);      Trace("Building MetaData join table.") if T(4);
611      # Denote we're starting the join table.      # Denote we're starting the join table.
612      print HTMLOUT "<a name=\"JoinTable\"></a><h3>Join Table</h3>\n";      $retVal .= "<a name=\"JoinTable\"></a><h3>Join Table</h3>\n";
613      # Create a table header.      # Create a table header.
614      print HTMLOUT _OpenTable("Join Table", "Source", "Target", "Join Condition");      $retVal .= _OpenTable("Join Table", "Source", "Target", "Join Condition");
615      # Loop through the joins.      # Loop through the joins.
616      my $joinTable = $metadata->{Joins};      my $joinTable = $metadata->{Joins};
617      my @joinKeys = keys %{$joinTable};      my @joinKeys = keys %{$joinTable};
# Line 506  Line 619 
619          # Separate out the source, the target, and the join clause.          # Separate out the source, the target, and the join clause.
620          $joinKey =~ m!^([^/]+)/(.+)$!;          $joinKey =~ m!^([^/]+)/(.+)$!;
621          my ($sourceRelation, $targetRelation) = ($1, $2);          my ($sourceRelation, $targetRelation) = ($1, $2);
622          Trace("Join with key $joinKey is from $sourceRelation to $targetRelation.") if T(4);          Trace("Join with key $joinKey is from $sourceRelation to $targetRelation.") if T(Joins => 4);
623          my $source = $self->ComputeObjectSentence($sourceRelation);          my $source = $self->ComputeObjectSentence($sourceRelation);
624          my $target = $self->ComputeObjectSentence($targetRelation);          my $target = $self->ComputeObjectSentence($targetRelation);
625          my $clause = $joinTable->{$joinKey};          my $clause = $joinTable->{$joinKey};
626          # Display them in a table row.          # Display them in a table row.
627          print HTMLOUT "<tr><td>$source</td><td>$target</td><td>$clause</td></tr>\n";          $retVal .= "<tr><td>$source</td><td>$target</td><td>$clause</td></tr>\n";
628      }      }
629      # Close the table.      # Close the table.
630      print HTMLOUT _CloseTable();      $retVal .= _CloseTable();
631      # Close the document.      Trace("Built MetaData HTML.") if T(3);
632      print HTMLOUT "</body>\n</html>\n";      # Return the HTML.
633      # Close the file.      return $retVal;
     close HTMLOUT;  
     Trace("Built MetaData web page.") if T(3);  
634  }  }
635    
636  =head3 DumpMetaData  =head3 DumpMetaData
637    
638  C<< $database->DumpMetaData(); >>  C<< $erdb->DumpMetaData(); >>
639    
640  Return a dump of the metadata structure.  Return a dump of the metadata structure.
641    
# Line 537  Line 648 
648      return Data::Dumper::Dumper($self->{_metaData});      return Data::Dumper::Dumper($self->{_metaData});
649  }  }
650    
651    =head3 FindIndexForEntity
652    
653    C<< my $indexFound = ERDB::FindIndexForEntity($xml, $entityName, $attributeName); >>
654    
655    This method locates the entry in an entity's index list that begins with the
656    specified attribute name. If the entity has no index list, one will be
657    created. This method works on raw XML, not a live ERDB object.
658    
659    =over 4
660    
661    =item xml
662    
663    The raw XML structure defining the database.
664    
665    =item entityName
666    
667    The name of the relevant entity.
668    
669    =item attributeName
670    
671    The name of the attribute relevant to the search.
672    
673    =item RETURN
674    
675    The numerical index in the index list of the index entry for the specified entity and
676    attribute, or C<undef> if no such index exists.
677    
678    =back
679    
680    =cut
681    
682    sub FindIndexForEntity {
683        # Get the parameters.
684        my ($xml, $entityName, $attributeName) = @_;
685        # Declare the return variable.
686        my $retVal;
687        # Get the named entity.
688        my $entityData = $xml->{Entities}->{$entityName};
689        if (! $entityData) {
690            Confess("Entity $entityName not found in DBD structure.");
691        } else {
692            # Insure it has an index list.
693            if (! exists $entityData->{Indexes}) {
694                $entityData->{Indexes} = [];
695            } else {
696                # Search for the desired index.
697                my $indexList = $entityData->{Indexes};
698                my $n = scalar @{$indexList};
699                Trace("Searching $n indexes in index list for $entityName.") if T(2);
700                # We use an indexed FOR here because we're returning an
701                # index number instead of an object. We do THAT so we can
702                # delete the index from the list if needed.
703                for (my $i = 0; $i < $n && !defined($retVal); $i++) {
704                    my $index = $indexList->[$i];
705                    my $fields = $index->{IndexFields};
706                    # Technically this IF should be safe (that is, we are guaranteed
707                    # the existence of a "$fields->[0]"), because when we load the XML
708                    # we have SuppressEmpty specified.
709                    if ($fields->[0]->{name} eq $attributeName) {
710                        $retVal = $i;
711                    }
712                }
713            }
714        }
715        Trace("Index for $attributeName of $entityName found at position $retVal.") if defined($retVal) && T(3);
716        Trace("Index for $attributeName not found in $entityName.") if !defined($retVal) && T(3);
717        # Return the result.
718        return $retVal;
719    }
720    
721  =head3 CreateTables  =head3 CreateTables
722    
723  C<< $datanase->CreateTables(); >>  C<< $erdb->CreateTables(); >>
724    
725  This method creates the tables for the database from the metadata structure loaded by the  This method creates the tables for the database from the metadata structure loaded by the
726  constructor. It is expected this function will only be used on rare occasions, when the  constructor. It is expected this function will only be used on rare occasions, when the
# Line 551  Line 732 
732  sub CreateTables {  sub CreateTables {
733      # Get the parameters.      # Get the parameters.
734      my ($self) = @_;      my ($self) = @_;
735      my $metadata = $self->{_metaData};      # Get the relation names.
736      my $dbh = $self->{_dbh};      my @relNames = $self->GetTableNames();
737      # Loop through the entities.      # Loop through the relations.
738      my $entityHash = $metadata->{Entities};      for my $relationName (@relNames) {
     for my $entityName (keys %{$entityHash}) {  
         my $entityData = $entityHash->{$entityName};  
         # Tell the user what we're doing.  
         Trace("Creating relations for entity $entityName.") if T(1);  
         # Loop through the entity's relations.  
         for my $relationName (keys %{$entityData->{Relations}}) {  
739              # Create a table for this relation.              # Create a table for this relation.
740              $self->CreateTable($relationName);              $self->CreateTable($relationName);
741              Trace("Relation $relationName created.") if T(1);          Trace("Relation $relationName created.") if T(2);
         }  
     }  
     # Loop through the relationships.  
     my $relationshipTable = $metadata->{Relationships};  
     for my $relationshipName (keys %{$metadata->{Relationships}}) {  
         # Create a table for this relationship.  
         Trace("Creating relationship $relationshipName.") if T(1);  
         $self->CreateTable($relationshipName);  
742      }      }
743  }  }
744    
745  =head3 CreateTable  =head3 CreateTable
746    
747  C<< $database->CreateTable($tableName, $indexFlag); >>  C<< $erdb->CreateTable($tableName, $indexFlag, $estimatedRows); >>
748    
749  Create the table for a relation and optionally create its indexes.  Create the table for a relation and optionally create its indexes.
750    
# Line 587  Line 754 
754    
755  Name of the relation (which will also be the table name).  Name of the relation (which will also be the table name).
756    
757  =item $indexFlag  =item indexFlag
758    
759  TRUE if the indexes for the relation should be created, else FALSE. If FALSE,  TRUE if the indexes for the relation should be created, else FALSE. If FALSE,
760  L</CreateIndexes> must be called later to bring the indexes into existence.  L</CreateIndexes> must be called later to bring the indexes into existence.
761    
762    =item estimatedRows (optional)
763    
764    If specified, the estimated maximum number of rows for the relation. This
765    information allows the creation of tables using storage engines that are
766    faster but require size estimates, such as MyISAM.
767    
768  =back  =back
769    
770  =cut  =cut
771    
772  sub CreateTable {  sub CreateTable {
773      # Get the parameters.      # Get the parameters.
774      my ($self, $relationName, $indexFlag) = @_;      my ($self, $relationName, $indexFlag, $estimatedRows) = @_;
775      # Get the database handle.      # Get the database handle.
776      my $dbh = $self->{_dbh};      my $dbh = $self->{_dbh};
777      # Get the relation data and determine whether or not the relation is primary.      # Get the relation data and determine whether or not the relation is primary.
# Line 622  Line 795 
795      # Insure the table is not already there.      # Insure the table is not already there.
796      $dbh->drop_table(tbl => $relationName);      $dbh->drop_table(tbl => $relationName);
797      Trace("Table $relationName dropped.") if T(2);      Trace("Table $relationName dropped.") if T(2);
798        # If there are estimated rows, create an estimate so we can take advantage of
799        # faster DB technologies.
800        my $estimation = undef;
801        if ($estimatedRows) {
802            $estimation = [$self->EstimateRowSize($relationName), $estimatedRows];
803        }
804      # Create the table.      # Create the table.
805      Trace("Creating table $relationName: $fieldThing") if T(2);      Trace("Creating table $relationName: $fieldThing") if T(2);
806      $dbh->create_table(tbl => $relationName, flds => $fieldThing);      $dbh->create_table(tbl => $relationName, flds => $fieldThing, estimates => $estimation);
807      Trace("Relation $relationName created in database.") if T(2);      Trace("Relation $relationName created in database.") if T(2);
808      # If we want to build the indexes, we do it here.      # If we want to build the indexes, we do it here. Note that the full-text search
809        # index will not be built until the table has been loaded.
810      if ($indexFlag) {      if ($indexFlag) {
811          $self->CreateIndex($relationName);          $self->CreateIndex($relationName);
812      }      }
813  }  }
814    
815    =head3 VerifyFields
816    
817    C<< my $count = $erdb->VerifyFields($relName, \@fieldList); >>
818    
819    Run through the list of proposed field values, insuring that all the character fields are
820    below the maximum length. If any fields are too long, they will be truncated in place.
821    
822    =over 4
823    
824    =item relName
825    
826    Name of the relation for which the specified fields are destined.
827    
828    =item fieldList
829    
830    Reference to a list, in order, of the fields to be put into the relation.
831    
832    =item RETURN
833    
834    Returns the number of fields truncated.
835    
836    =back
837    
838    =cut
839    
840    sub VerifyFields {
841        # Get the parameters.
842        my ($self, $relName, $fieldList) = @_;
843        # Initialize the return value.
844        my $retVal = 0;
845        # Get the relation definition.
846        my $relData = $self->_FindRelation($relName);
847        # Get the list of field descriptors.
848        my $fieldTypes = $relData->{Fields};
849        my $fieldCount = scalar @{$fieldTypes};
850        # Loop through the two lists.
851        for (my $i = 0; $i < $fieldCount; $i++) {
852            # Get the type of the current field.
853            my $fieldType = $fieldTypes->[$i]->{type};
854            # If it's a character field, verify the length.
855            if ($fieldType =~ /string/) {
856                my $maxLen = $TypeTable{$fieldType}->{maxLen};
857                my $oldString = $fieldList->[$i];
858                if (length($oldString) > $maxLen) {
859                    # Here it's too big, so we truncate it.
860                    Trace("Truncating field $i in relation $relName to $maxLen characters from \"$oldString\".") if T(1);
861                    $fieldList->[$i] = substr $oldString, 0, $maxLen;
862                    $retVal++;
863                }
864            }
865        }
866        # Return the truncation count.
867        return $retVal;
868    }
869    
870    =head3 DigestFields
871    
872    C<< $erdb->DigestFields($relName, $fieldList); >>
873    
874    Digest the strings in the field list that correspond to data type C<hash-string> in the
875    specified relation.
876    
877    =over 4
878    
879    =item relName
880    
881    Name of the relation to which the fields belong.
882    
883    =item fieldList
884    
885    List of field contents to be loaded into the relation.
886    
887    =back
888    
889    =cut
890    #: Return Type ;
891    sub DigestFields {
892        # Get the parameters.
893        my ($self, $relName, $fieldList) = @_;
894        # Get the relation definition.
895        my $relData = $self->_FindRelation($relName);
896        # Get the list of field descriptors.
897        my $fieldTypes = $relData->{Fields};
898        my $fieldCount = scalar @{$fieldTypes};
899        # Loop through the two lists.
900        for (my $i = 0; $i < $fieldCount; $i++) {
901            # Get the type of the current field.
902            my $fieldType = $fieldTypes->[$i]->{type};
903            # If it's a hash string, digest it in place.
904            if ($fieldType eq 'hash-string') {
905                $fieldList->[$i] = $self->DigestKey($fieldList->[$i]);
906            }
907        }
908    }
909    
910    =head3 DigestKey
911    
912    C<< my $digested = $erdb->DigestKey($keyValue); >>
913    
914    Return the digested value of a symbolic key. The digested value can then be plugged into a
915    key-based search into a table with key-type hash-string.
916    
917    Currently the digesting process is independent of the database structure, but that may not
918    always be the case, so this is an instance method instead of a static method.
919    
920    =over 4
921    
922    =item keyValue
923    
924    Key value to digest.
925    
926    =item RETURN
927    
928    Digested value of the key.
929    
930    =back
931    
932    =cut
933    
934    sub DigestKey {
935        # Get the parameters.
936        my ($self, $keyValue) = @_;
937        # Compute the digest.
938        my $retVal = md5_base64($keyValue);
939        # Return the result.
940        return $retVal;
941    }
942    
943  =head3 CreateIndex  =head3 CreateIndex
944    
945  C<< $database->CreateIndex($relationName); >>  C<< $erdb->CreateIndex($relationName); >>
946    
947  Create the indexes for a relation. If a table is being loaded from a large source file (as  Create the indexes for a relation. If a table is being loaded from a large source file (as
948  is the case in L</LoadTable>), it is best to create the indexes after the load. If that is  is the case in L</LoadTable>), it is sometimes best to create the indexes after the load.
949  the case, then L</CreateTable> should be called with the index flag set to FALSE, and this  If that is the case, then L</CreateTable> should be called with the index flag set to
950  method used after the load to create the indexes for the table.  FALSE, and this method used after the load to create the indexes for the table.
951    
952  =cut  =cut
953    
# Line 655  Line 963 
963      for my $indexName (keys %{$indexHash}) {      for my $indexName (keys %{$indexHash}) {
964          my $indexData = $indexHash->{$indexName};          my $indexData = $indexHash->{$indexName};
965          # Get the index's field list.          # Get the index's field list.
966          my @fieldList = _FixNames(@{$indexData->{IndexFields}});          my @rawFields = @{$indexData->{IndexFields}};
967            # Get a hash of the relation's field types.
968            my %types = map { $_->{name} => $_->{type} } @{$relationData->{Fields}};
969            # We need to check for text fields. We need a append a length limitation for them. To do
970            # that, we need the relation's field list.
971            my $relFields = $relationData->{Fields};
972            for (my $i = 0; $i <= $#rawFields; $i++) {
973                # Get the field type.
974                my $field = $rawFields[$i];
975                my $type = $types{$field};
976                # Ask if it requires using prefix notation for the index.
977                my $mod = $TypeTable{$type}->{indexMod};
978                Trace("Field $field ($i) in $relationName has type $type and indexMod $mod.") if T(3);
979                if ($mod) {
980                    # Append the prefix length to the field name,
981                    $rawFields[$i] .= "($mod)";
982                }
983            }
984            my @fieldList = _FixNames(@rawFields);
985          my $flds = join(', ', @fieldList);          my $flds = join(', ', @fieldList);
986          # Get the index's uniqueness flag.          # Get the index's uniqueness flag.
987          my $unique = (exists $indexData->{Unique} ? $indexData->{Unique} : 'false');          my $unique = (exists $indexData->{Unique} ? 'unique' : undef);
988          # Create the index.          # Create the index.
989          $dbh->create_index(idx => $indexName, tbl => $relationName, flds => $flds, unique => $unique);          my $rv = $dbh->create_index(idx => $indexName, tbl => $relationName,
990                                        flds => $flds, kind => $unique);
991            if ($rv) {
992          Trace("Index created: $indexName for $relationName ($flds)") if T(1);          Trace("Index created: $indexName for $relationName ($flds)") if T(1);
993            } else {
994                Confess("Error creating index $indexName for $relationName using ($flds): " . $dbh->error_message());
995            }
996        }
997    }
998    
999    =head3 GetSecondaryFields
1000    
1001    C<< my %fieldTuples = $erdb->GetSecondaryFields($entityName); >>
1002    
1003    This method will return a list of the name and type of each of the secondary
1004    fields for a specified entity. Secondary fields are stored in two-column tables
1005    in addition to the primary entity table. This enables the field to have no value
1006    or to have multiple values.
1007    
1008    =over 4
1009    
1010    =item entityName
1011    
1012    Name of the entity whose secondary fields are desired.
1013    
1014    =item RETURN
1015    
1016    Returns a hash mapping the field names to their field types.
1017    
1018    =back
1019    
1020    =cut
1021    
1022    sub GetSecondaryFields {
1023        # Get the parameters.
1024        my ($self, $entityName) = @_;
1025        # Declare the return variable.
1026        my %retVal = ();
1027        # Look for the entity.
1028        my $table = $self->GetFieldTable($entityName);
1029        # Loop through the fields, pulling out the secondaries.
1030        for my $field (sort keys %{$table}) {
1031            if ($table->{$field}->{relation} ne $entityName) {
1032                # Here we have a secondary field.
1033                $retVal{$field} = $table->{$field}->{type};
1034            }
1035        }
1036        # Return the result.
1037        return %retVal;
1038    }
1039    
1040    =head3 GetFieldRelationName
1041    
1042    C<< my $name = $erdb->GetFieldRelationName($objectName, $fieldName); >>
1043    
1044    Return the name of the relation containing a specified field.
1045    
1046    =over 4
1047    
1048    =item objectName
1049    
1050    Name of the entity or relationship containing the field.
1051    
1052    =item fieldName
1053    
1054    Name of the relevant field in that entity or relationship.
1055    
1056    =item RETURN
1057    
1058    Returns the name of the database relation containing the field, or C<undef> if
1059    the field does not exist.
1060    
1061    =back
1062    
1063    =cut
1064    
1065    sub GetFieldRelationName {
1066        # Get the parameters.
1067        my ($self, $objectName, $fieldName) = @_;
1068        # Declare the return variable.
1069        my $retVal;
1070        # Get the object field table.
1071        my $table = $self->GetFieldTable($objectName);
1072        # Only proceed if the field exists.
1073        if (exists $table->{$fieldName}) {
1074            # Determine the name of the relation that contains this field.
1075            $retVal = $table->{$fieldName}->{relation};
1076        }
1077        # Return the result.
1078        return $retVal;
1079    }
1080    
1081    =head3 DeleteValue
1082    
1083    C<< my $numDeleted = $erdb->DeleteValue($entityName, $id, $fieldName, $fieldValue); >>
1084    
1085    Delete secondary field values from the database. This method can be used to delete all
1086    values of a specified field for a particular entity instance, or only a single value.
1087    
1088    Secondary fields are stored in two-column relations separate from an entity's primary
1089    table, and as a result a secondary field can legitimately have no value or multiple
1090    values. Therefore, it makes sense to talk about deleting secondary fields where it
1091    would not make sense for primary fields.
1092    
1093    =over 4
1094    
1095    =item entityName
1096    
1097    Name of the entity from which the fields are to be deleted.
1098    
1099    =item id
1100    
1101    ID of the entity instance to be processed. If the instance is not found, this
1102    method will have no effect. If C<undef> is specified, all values for all of
1103    the entity instances will be deleted.
1104    
1105    =item fieldName
1106    
1107    Name of the field whose values are to be deleted.
1108    
1109    =item fieldValue (optional)
1110    
1111    Value to be deleted. If not specified, then all values of the specified field
1112    will be deleted for the entity instance. If specified, then only the values which
1113    match this parameter will be deleted.
1114    
1115    =item RETURN
1116    
1117    Returns the number of rows deleted.
1118    
1119    =back
1120    
1121    =cut
1122    
1123    sub DeleteValue {
1124        # Get the parameters.
1125        my ($self, $entityName, $id, $fieldName, $fieldValue) = @_;
1126        # Declare the return value.
1127        my $retVal = 0;
1128        # We need to set up an SQL command to do the deletion. First, we
1129        # find the name of the field's relation.
1130        my $table = $self->GetFieldTable($entityName);
1131        my $field = $table->{$fieldName};
1132        my $relation = $field->{relation};
1133        # Make sure this is a secondary field.
1134        if ($relation eq $entityName) {
1135            Confess("Cannot delete values of $fieldName for $entityName.");
1136        } else {
1137            # Set up the SQL command to delete all values.
1138            my $sql = "DELETE FROM $relation";
1139            # Build the filter.
1140            my @filters = ();
1141            my @parms = ();
1142            # Check for a filter by ID.
1143            if (defined $id) {
1144                push @filters, "id = ?";
1145                push @parms, $id;
1146            }
1147            # Check for a filter by value.
1148            if (defined $fieldValue) {
1149                push @filters, "$fieldName = ?";
1150                push @parms, $fieldValue;
1151            }
1152            # Append the filters to the command.
1153            if (@filters) {
1154                $sql .= " WHERE " . join(" AND ", @filters);
1155            }
1156            # Execute the command.
1157            my $dbh = $self->{_dbh};
1158            $retVal = $dbh->SQL($sql, 0, @parms);
1159      }      }
1160        # Return the result.
1161        return $retVal;
1162  }  }
1163    
1164  =head3 LoadTables  =head3 LoadTables
1165    
1166  C<< my $stats = $database->LoadTables($directoryName, $rebuild); >>  C<< my $stats = $erdb->LoadTables($directoryName, $rebuild); >>
1167    
1168  This method will load the database tables from a directory. The tables must already have been created  This method will load the database tables from a directory. The tables must already have been created
1169  in the database. (This can be done by calling L</CreateTables>.) The caller passes in a directory name;  in the database. (This can be done by calling L</CreateTables>.) The caller passes in a directory name;
# Line 710  Line 1206 
1206      $directoryName =~ s!/\\$!!;      $directoryName =~ s!/\\$!!;
1207      # Declare the return variable.      # Declare the return variable.
1208      my $retVal = Stats->new();      my $retVal = Stats->new();
1209      # Get the metadata structure.      # Get the relation names.
1210      my $metaData = $self->{_metaData};      my @relNames = $self->GetTableNames();
1211      # Loop through the entities.      for my $relationName (@relNames) {
     for my $entity (values %{$metaData->{Entities}}) {  
         # Loop through the entity's relations.  
         for my $relationName (keys %{$entity->{Relations}}) {  
1212              # Try to load this relation.              # Try to load this relation.
1213              my $result = $self->_LoadRelation($directoryName, $relationName, $rebuild);              my $result = $self->_LoadRelation($directoryName, $relationName, $rebuild);
1214              # Accumulate the statistics.              # Accumulate the statistics.
1215              $retVal->Accumulate($result);              $retVal->Accumulate($result);
1216          }          }
     }  
     # Loop through the relationships.  
     for my $relationshipName (keys %{$metaData->{Relationships}}) {  
         # Try to load this relationship's relation.  
         my $result = $self->_LoadRelation($directoryName, $relationshipName, $rebuild);  
         # Accumulate the statistics.  
         $retVal->Accumulate($result);  
     }  
1217      # Add the duration of the load to the statistical object.      # Add the duration of the load to the statistical object.
1218      $retVal->Add('duration', gettimeofday - $startTime);      $retVal->Add('duration', gettimeofday - $startTime);
1219      # Return the accumulated statistics.      # Return the accumulated statistics.
1220      return $retVal;      return $retVal;
1221  }  }
1222    
1223    
1224  =head3 GetTableNames  =head3 GetTableNames
1225    
1226  C<< my @names = $database->GetTableNames; >>  C<< my @names = $erdb->GetTableNames; >>
1227    
1228  Return a list of the relations required to implement this database.  Return a list of the relations required to implement this database.
1229    
# Line 754  Line 1240 
1240    
1241  =head3 GetEntityTypes  =head3 GetEntityTypes
1242    
1243  C<< my @names = $database->GetEntityTypes; >>  C<< my @names = $erdb->GetEntityTypes; >>
1244    
1245  Return a list of the entity type names.  Return a list of the entity type names.
1246    
# Line 769  Line 1255 
1255      return sort keys %{$entityList};      return sort keys %{$entityList};
1256  }  }
1257    
1258  =head3 Get  =head3 GetDataTypes
1259    
1260  C<< my $query = $database->Get(\@objectNames, $filterClause, $param1, $param2, ..., $paramN); >>  C<< my %types = ERDB::GetDataTypes(); >>
1261    
1262  This method returns a query object for entities of a specified type using a specified filter.  Return a table of ERDB data types. The table returned is a hash of hashes.
1263    The keys of the big hash are the datatypes. Each smaller hash has several
1264    values used to manage the data. The most interesting is the SQL type (key
1265    C<sqlType>) and the descriptive node (key C<notes>).
1266    
1267    Note that changing the values in the smaller hashes will seriously break
1268    things, so this data should be treated as read-only.
1269    
1270    =cut
1271    
1272    sub GetDataTypes {
1273        return %TypeTable;
1274    }
1275    
1276    
1277    =head3 IsEntity
1278    
1279    C<< my $flag = $erdb->IsEntity($entityName); >>
1280    
1281    Return TRUE if the parameter is an entity name, else FALSE.
1282    
1283    =over 4
1284    
1285    =item entityName
1286    
1287    Object name to be tested.
1288    
1289    =item RETURN
1290    
1291    Returns TRUE if the specified string is an entity name, else FALSE.
1292    
1293    =back
1294    
1295    =cut
1296    
1297    sub IsEntity {
1298        # Get the parameters.
1299        my ($self, $entityName) = @_;
1300        # Test to see if it's an entity.
1301        return exists $self->{_metaData}->{Entities}->{$entityName};
1302    }
1303    
1304    =head3 Get
1305    
1306    C<< my $query = $erdb->Get(\@objectNames, $filterClause, \@params); >>
1307    
1308    This method returns a query object for entities of a specified type using a specified filter.
1309  The filter is a standard WHERE/ORDER BY clause with question marks as parameter markers and each  The filter is a standard WHERE/ORDER BY clause with question marks as parameter markers and each
1310  field name represented in the form B<I<objectName>(I<fieldName>)>. For example, the  field name represented in the form B<I<objectName>(I<fieldName>)>. For example, the
1311  following call requests all B<Genome> objects for the genus specified in the variable  following call requests all B<Genome> objects for the genus specified in the variable
1312  $genus.  $genus.
1313    
1314  C<< $query = $sprout->Get(['Genome'], "Genome(genus) = ?", $genus); >>  C<< $query = $erdb->Get(['Genome'], "Genome(genus) = ?", [$genus]); >>
1315    
1316  The WHERE clause contains a single question mark, so there is a single additional  The WHERE clause contains a single question mark, so there is a single additional
1317  parameter representing the parameter value. It would also be possible to code  parameter representing the parameter value. It would also be possible to code
1318    
1319  C<< $query = $sprout->Get(['Genome'], "Genome(genus) = \'$genus\'"); >>  C<< $query = $erdb->Get(['Genome'], "Genome(genus) = \'$genus\'"); >>
1320    
1321  however, this version of the call would generate a syntax error if there were any quote  however, this version of the call would generate a syntax error if there were any quote
1322  characters inside the variable C<$genus>.  characters inside the variable C<$genus>.
# Line 796  Line 1328 
1328  It is possible to specify multiple entity and relationship names in order to retrieve more than  It is possible to specify multiple entity and relationship names in order to retrieve more than
1329  one object's data at the same time, which allows highly complex joined queries. For example,  one object's data at the same time, which allows highly complex joined queries. For example,
1330    
1331  C<< $query = $sprout->Get(['Genome', 'ComesFrom', 'Source'], "Genome(genus) = ?", $genus); >>  C<< $query = $erdb->Get(['Genome', 'ComesFrom', 'Source'], "Genome(genus) = ?", [$genus]); >>
1332    
1333  If multiple names are specified, then the query processor will automatically determine a  If multiple names are specified, then the query processor will automatically determine a
1334  join path between the entities and relationships. The algorithm used is very simplistic.  join path between the entities and relationships. The algorithm used is very simplistic.
1335  In particular, you can't specify any entity or relationship more than once, and if a  In particular, if a relationship is recursive, the path is determined by the order in which
1336  relationship is recursive, the path is determined by the order in which the entity  the entity and the relationship appear. For example, consider a recursive relationship
1337  and the relationship appear. For example, consider a recursive relationship B<IsParentOf>  B<IsParentOf> which relates B<People> objects to other B<People> objects. If the join path is
 which relates B<People> objects to other B<People> objects. If the join path is  
1338  coded as C<['People', 'IsParentOf']>, then the people returned will be parents. If, however,  coded as C<['People', 'IsParentOf']>, then the people returned will be parents. If, however,
1339  the join path is C<['IsParentOf', 'People']>, then the people returned will be children.  the join path is C<['IsParentOf', 'People']>, then the people returned will be children.
1340    
1341    If an entity or relationship is mentioned twice, the name for the second occurrence will
1342    be suffixed with C<2>, the third occurrence will be suffixed with C<3>, and so forth. So,
1343    for example, if we have C<['Feature', 'HasContig', 'Contig', 'HasContig']>, then the
1344    B<to-link> field of the first B<HasContig> is specified as C<HasContig(to-link)>, while
1345    the B<to-link> field of the second B<HasContig> is specified as C<HasContig2(to-link)>.
1346    
1347  =over 4  =over 4
1348    
1349  =item objectNames  =item objectNames
# Line 829  Line 1366 
1366    
1367  C<< "Genome(genus) = ? ORDER BY Genome(species)" >>  C<< "Genome(genus) = ? ORDER BY Genome(species)" >>
1368    
1369    Note that the case is important. Only an uppercase "ORDER BY" with a single space will
1370    be processed. The idea is to make it less likely to find the verb by accident.
1371    
1372  The rules for field references in a sort order are the same as those for field references in the  The rules for field references in a sort order are the same as those for field references in the
1373  filter clause in general; however, odd things may happen if a sort field is from a secondary  filter clause in general; however, odd things may happen if a sort field is from a secondary
1374  relation.  relation.
1375    
1376  =item param1, param2, ..., paramN  Finally, you can limit the number of rows returned by adding a LIMIT clause. The LIMIT must
1377    be the last thing in the filter clause, and it contains only the word "LIMIT" followed by
1378    a positive number. So, for example
1379    
1380    C<< "Genome(genus) = ? ORDER BY Genome(species) LIMIT 10" >>
1381    
1382    will only return the first ten genomes for the specified genus. The ORDER BY clause is not
1383    required. For example, to just get the first 10 genomes in the B<Genome> table, you could
1384    use
1385    
1386  Parameter values to be substituted into the filter clause.  C<< "LIMIT 10" >>
1387    
1388    =item params
1389    
1390    Reference to a list of parameter values to be substituted into the filter clause.
1391    
1392  =item RETURN  =item RETURN
1393    
# Line 847  Line 1399 
1399    
1400  sub Get {  sub Get {
1401      # Get the parameters.      # Get the parameters.
1402      my ($self, $objectNames, $filterClause, @params) = @_;      my ($self, $objectNames, $filterClause, $params) = @_;
1403      # Construct the SELECT statement. The general pattern is      # Process the SQL stuff.
1404      #      my ($suffix, $mappedNameListRef, $mappedNameHashRef) =
1405      # SELECT name1.*, name2.*, ... nameN.* FROM name1, name2, ... nameN          $self->_SetupSQL($objectNames, $filterClause);
1406      #      # Create the query.
1407      my $dbh = $self->{_dbh};      my $command = "SELECT DISTINCT " . join(".*, ", @{$mappedNameListRef}) .
1408      my $command = "SELECT DISTINCT " . join('.*, ', @{$objectNames}) . ".* FROM " .          ".* $suffix";
1409                  join(', ', @{$objectNames});      my $sth = $self->_GetStatementHandle($command, $params);
1410      # Check for a filter clause.      # Now we create the relation map, which enables DBQuery to determine the order, name
1411      if ($filterClause) {      # and mapped name for each object in the query.
1412          # Here we have one, so we convert its field names and add it to the query. First,      my @relationMap = ();
1413          # We create a copy of the filter string we can work with.      for my $mappedName (@{$mappedNameListRef}) {
1414          my $filterString = $filterClause;          push @relationMap, [$mappedName, $mappedNameHashRef->{$mappedName}];
         # Next, we sort the object names by length. This helps protect us from finding  
         # object names inside other object names when we're doing our search and replace.  
         my @sortedNames = sort { length($b) - length($a) } @{$objectNames};  
         # We will also keep a list of conditions to add to the WHERE clause in order to link  
         # entities and relationships as well as primary relations to secondary ones.  
         my @joinWhere = ();  
         # The final preparatory step is to create a hash table of relation names. The  
         # table begins with the relation names already in the SELECT command.  
         my %fromNames = ();  
         for my $objectName (@sortedNames) {  
             $fromNames{$objectName} = 1;  
         }  
         # We are ready to begin. We loop through the object names, replacing each  
         # object name's field references by the corresponding SQL field reference.  
         # Along the way, if we find a secondary relation, we will need to add it  
         # to the FROM clause.  
         for my $objectName (@sortedNames) {  
             # Get the length of the object name plus 2. This is the value we add to the  
             # size of the field name to determine the size of the field reference as a  
             # whole.  
             my $nameLength = 2 + length $objectName;  
             # Get the object's field list.  
             my $fieldList = $self->_GetFieldTable($objectName);  
             # Find the field references for this object.  
             while ($filterString =~ m/$objectName\(([^)]*)\)/g) {  
                 # At this point, $1 contains the field name, and the current position  
                 # is set immediately after the final parenthesis. We pull out the name of  
                 # the field and the position and length of the field reference as a whole.  
                 my $fieldName = $1;  
                 my $len = $nameLength + length $fieldName;  
                 my $pos = pos($filterString) - $len;  
                 # Insure the field exists.  
                 if (!exists $fieldList->{$fieldName}) {  
                     Confess("Field $fieldName not found for object $objectName.");  
                 } else {  
                     # Get the field's relation.  
                     my $relationName = $fieldList->{$fieldName}->{relation};  
                     # Insure the relation is in the FROM clause.  
                     if (!exists $fromNames{$relationName}) {  
                         # Add the relation to the FROM clause.  
                         $command .= ", $relationName";  
                         # Create its join sub-clause.  
                         push @joinWhere, "$objectName.id = $relationName.id";  
                         # Denote we have it available for future fields.  
                         $fromNames{$relationName} = 1;  
                     }  
                     # Form an SQL field reference from the relation name and the field name.  
                     my $sqlReference = "$relationName." . _FixName($fieldName);  
                     # Put it into the filter string in place of the old value.  
                     substr($filterString, $pos, $len) = $sqlReference;  
                     # Reposition the search.  
                     pos $filterString = $pos + length $sqlReference;  
                 }  
             }  
         }  
         # The next step is to join the objects together. We only need to do this if there  
         # is more than one object in the object list. We start with the first object and  
         # run through the objects after it. Note also that we make a safety copy of the  
         # list before running through it.  
         my @objectList = @{$objectNames};  
         my $lastObject = shift @objectList;  
         # Get the join table.  
         my $joinTable = $self->{_metaData}->{Joins};  
         # Loop through the object list.  
         for my $thisObject (@objectList) {  
             # Look for a join.  
             my $joinKey = "$lastObject/$thisObject";  
             if (!exists $joinTable->{$joinKey}) {  
                 # Here there's no join, so we throw an error.  
                 Confess("No join exists to connect from $lastObject to $thisObject.");  
             } else {  
                 # Get the join clause and add it to the WHERE list.  
                 push @joinWhere, $joinTable->{$joinKey};  
                 # Save this object as the last object for the next iteration.  
                 $lastObject = $thisObject;  
             }  
         }  
         # Now we need to handle the whole ORDER BY thing. We'll put the order by clause  
         # in the following variable.  
         my $orderClause = "";  
         # Locate the ORDER BY verb (if any).  
         if ($filterString =~ m/^(.*)ORDER BY/g) {  
             # Here we have an ORDER BY verb. Split it off of the filter string.  
             my $pos = pos $filterString;  
             $orderClause = substr($filterString, $pos);  
             $filterString = $1;  
         }  
         # Add the filter and the join clauses (if any) to the SELECT command.  
         if ($filterString) {  
             push @joinWhere, "($filterString)";  
         }  
         if (@joinWhere) {  
             $command .= " WHERE " . join(' AND ', @joinWhere);  
         }  
         # Add the sort clause (if any) to the SELECT command.  
         if ($orderClause) {  
             $command .= " ORDER BY $orderClause";  
         }  
1415      }      }
     Trace("SQL query: $command") if T(2);  
     Trace("PARMS: '" . (join "', '", @params) . "'") if (T(3) && (@params > 0));  
     my $sth = $dbh->prepare_command($command);  
     # Execute it with the parameters bound in.  
     $sth->execute(@params) || Confess("SELECT error" . $sth->errstr());  
1416      # Return the statement object.      # Return the statement object.
1417      my $retVal = DBQuery::_new($self, $sth, @{$objectNames});      my $retVal = DBQuery::_new($self, $sth, \@relationMap);
1418      return $retVal;      return $retVal;
1419  }  }
1420    
1421  =head3 GetList  =head3 Search
   
 C<< my @dbObjects = $database->GetList(\@objectNames, $filterClause, $param1, $param2, ..., $paramN); >>  
1422    
1423  Return a list of object descriptors for the specified objects as determined by the  C<< my $query = $erdb->Search($searchExpression, $idx, \@objectNames, $filterClause, \@params); >>
 specified filter clause.  
1424    
1425  This method is essentially the same as L</Get> except it returns a list of objects rather  Perform a full text search with filtering. The search will be against a specified object
1426  than a query object that can be used to get the results one record at a time.  in the object name list. That object will get an extra field containing the search
1427    relevance. Note that except for the search expression, the parameters of this method are
1428    the same as those for L</Get> and follow the same rules.
1429    
1430  =over 4  =over 4
1431    
1432    =item searchExpression
1433    
1434    Boolean search expression for the text fields of the target object. The default mode for
1435    a Boolean search expression is OR, but we want the default to be AND, so we will
1436    add a C<+> operator to each word with no other operator before it.
1437    
1438    =item idx
1439    
1440    Index in the I<$objectNames> list of the table to be searched in full-text mode.
1441    
1442  =item objectNames  =item objectNames
1443    
1444  List containing the names of the entity and relationship objects to be retrieved.  List containing the names of the entity and relationship objects to be retrieved.
# Line 995  Line 1453 
1453  or secondary entity relations; however, all of the entities and relationships involved must  or secondary entity relations; however, all of the entities and relationships involved must
1454  be included in the list of object names.  be included in the list of object names.
1455    
1456  The filter clause can also specify a sort order. To do this, simply follow the filter string  =item params
 with an ORDER BY clause. For example, the following filter string gets all genomes for a  
 particular genus and sorts them by species name.  
1457    
1458  C<< "Genome(genus) = ? ORDER BY Genome(species)" >>  Reference to a list of parameter values to be substituted into the filter clause.
1459    
1460  The rules for field references in a sort order are the same as those for field references in the  =item RETURN
1461  filter clause in general; however, odd things may happen if a sort field is from a secondary  
1462  relation.  Returns a query object for the specified search.
1463    
1464    =back
1465    
1466    =cut
1467    
1468    sub Search {
1469        # Get the parameters.
1470        my ($self, $searchExpression, $idx, $objectNames, $filterClause, $params) = @_;
1471        # Declare the return variable.
1472        my $retVal;
1473        # Create a safety copy of the parameter list. Note we have to be careful to insure
1474        # a parameter list exists before we copy it.
1475        my @myParams = ();
1476        if (defined $params) {
1477            @myParams = @{$params};
1478        }
1479        # Get the first object's structure so we have access to the searchable fields.
1480        my $object1Name = $objectNames->[$idx];
1481        my $object1Structure = $self->_GetStructure($object1Name);
1482        # Get the field list.
1483        if (! exists $object1Structure->{searchFields}) {
1484            Confess("No searchable index for $object1Name.");
1485        } else {
1486            # Get the field list.
1487            my @fields = @{$object1Structure->{searchFields}};
1488            # Clean the search expression.
1489            my $actualKeywords = $self->CleanKeywords($searchExpression);
1490            # Prefix a "+" to each uncontrolled word. This converts the default
1491            # search mode from OR to AND.
1492            $actualKeywords =~ s/(^|\s)(\w)/$1\+$2/g;
1493            Trace("Actual keywords for search are\n$actualKeywords") if T(3);
1494            # We need two match expressions, one for the filter clause and one in the
1495            # query itself. Both will use a parameter mark, so we need to push the
1496            # search expression onto the front of the parameter list twice.
1497            unshift @myParams, $actualKeywords, $actualKeywords;
1498            # Build the match expression.
1499            my @matchFilterFields = map { "$object1Name." . _FixName($_) } @fields;
1500            my $matchClause = "MATCH (" . join(", ", @matchFilterFields) . ") AGAINST (? IN BOOLEAN MODE)";
1501            # Process the SQL stuff.
1502            my ($suffix, $mappedNameListRef, $mappedNameHashRef) =
1503                $self->_SetupSQL($objectNames, $filterClause, $matchClause);
1504            # Create the query. Note that the match clause is inserted at the front of
1505            # the select fields.
1506            my $command = "SELECT DISTINCT $matchClause, " . join(".*, ", @{$mappedNameListRef}) .
1507                ".* $suffix";
1508            my $sth = $self->_GetStatementHandle($command, \@myParams);
1509            # Now we create the relation map, which enables DBQuery to determine the order, name
1510            # and mapped name for each object in the query.
1511            my @relationMap = _RelationMap($mappedNameHashRef, $mappedNameListRef);
1512            # Return the statement object.
1513            $retVal = DBQuery::_new($self, $sth, \@relationMap, $object1Name);
1514        }
1515        return $retVal;
1516    }
1517    
1518    =head3 GetFlat
1519    
1520    C<< my @list = $erdb->GetFlat(\@objectNames, $filterClause, \@parameterList, $field); >>
1521    
1522    This is a variation of L</GetAll> that asks for only a single field per record and
1523    returns a single flattened list.
1524    
1525    =over 4
1526    
1527    =item objectNames
1528    
1529    List containing the names of the entity and relationship objects to be retrieved.
1530    
1531    =item filterClause
1532    
1533    WHERE/ORDER BY clause (without the WHERE) to be used to filter and sort the query. The WHERE clause can
1534    be parameterized with parameter markers (C<?>). Each field used must be specified in the standard form
1535    B<I<objectName>(I<fieldName>)>. Any parameters specified in the filter clause should be added to the
1536    parameter list as additional parameters. The fields in a filter clause can come from primary
1537    entity relations, relationship relations, or secondary entity relations; however, all of the
1538    entities and relationships involved must be included in the list of object names.
1539    
1540    =item parameterList
1541    
1542  =item param1, param2, ..., paramN  List of the parameters to be substituted in for the parameters marks in the filter clause.
1543    
1544    =item field
1545    
1546  Parameter values to be substituted into the filter clause.  Name of the field to be used to get the elements of the list returned.
1547    
1548  =item RETURN  =item RETURN
1549    
1550  Returns a list of B<DBObject>s that satisfy the query conditions.  Returns a list of values.
1551    
1552  =back  =back
1553    
1554  =cut  =cut
1555  #: Return Type @%  #: Return Type @;
1556  sub GetList {  sub GetFlat {
1557      # Get the parameters.      # Get the parameters.
1558      my ($self, $objectNames, $filterClause, @params) = @_;      my ($self, $objectNames, $filterClause, $parameterList, $field) = @_;
1559      # Declare the return variable.      # Construct the query.
1560        my $query = $self->Get($objectNames, $filterClause, $parameterList);
1561        # Create the result list.
1562      my @retVal = ();      my @retVal = ();
1563      # Perform the query.      # Loop through the records, adding the field values found to the result list.
1564      my $query = $self->Get($objectNames, $filterClause, @params);      while (my $row = $query->Fetch()) {
1565      # Loop through the results.          push @retVal, $row->Value($field);
     while (my $object = $query->Fetch) {  
         push @retVal, $object;  
1566      }      }
1567      # Return the result.      # Return the list created.
1568      return @retVal;      return @retVal;
1569  }  }
1570    
1571  =head3 ComputeObjectSentence  =head3 SpecialFields
1572    
1573  C<< my $sentence = $database->ComputeObjectSentence($objectName); >>  C<< my %specials = $erdb->SpecialFields($entityName); >>
1574    
1575  Check an object name, and if it is a relationship convert it to a relationship sentence.  Return a hash mapping special fields in the specified entity to the value of their
1576    C<special> attribute. This enables the subclass to get access to the special field
1577    attributes without needed to plumb the internal ERDB data structures.
1578    
1579  =over 4  =over 4
1580    
1581  =item objectName  =item entityName
1582    
1583  Name of the entity or relationship.  Name of the entity whose special fields are desired.
1584    
1585  =item RETURN  =item RETURN
1586    
1587  Returns a string containing the entity name or a relationship sentence.  Returns a hash. The keys of the hash are the special field names, and the values
1588    are the values from each special field's C<special> attribute.
1589    
1590  =back  =back
1591    
1592  =cut  =cut
1593    
1594  sub ComputeObjectSentence {  sub SpecialFields {
1595      # Get the parameters.      # Get the parameters.
1596      my ($self, $objectName) = @_;      my ($self, $entityName) = @_;
1597      # Set the default return value.      # Declare the return variable.
1598      my $retVal = $objectName;      my %retVal = ();
1599      # Look for the object as a relationship.      # Find the entity's data structure.
1600      my $relTable = $self->{_metaData}->{Relationships};      my $entityData = $self->{_metaData}->{Entities}->{$entityName};
1601      if (exists $relTable->{$objectName}) {      # Loop through its fields, adding each special field to the return hash.
1602          # Get the relationship sentence.      my $fieldHash = $entityData->{Fields};
1603          $retVal = _ComputeRelationshipSentence($objectName, $relTable->{$objectName});      for my $fieldName (keys %{$fieldHash}) {
1604            my $fieldData = $fieldHash->{$fieldName};
1605            if (exists $fieldData->{special}) {
1606                $retVal{$fieldName} = $fieldData->{special};
1607            }
1608      }      }
1609      # Return the result.      # Return the result.
1610      return $retVal;      return %retVal;
1611  }  }
1612    
1613  =head3 DumpRelations  =head3 Delete
1614    
1615  C<< $database->DumpRelations($outputDirectory); >>  C<< my $stats = $erdb->Delete($entityName, $objectID); >>
1616    
1617  Write the contents of all the relations to tab-delimited files in the specified directory.  Delete an entity instance from the database. The instance is deleted along with all entity and
1618  Each file will have the same name as the relation dumped, with an extension of DTX.  relationship instances dependent on it. The idea of dependence here is recursive. An object is
1619    always dependent on itself. An object is dependent if it is a 1-to-many or many-to-many
1620    relationship connected to a dependent entity or the "to" entity connected to a 1-to-many
1621    dependent relationship.
1622    
1623  =over 4  =over 4
1624    
1625  =item outputDirectory  =item entityName
1626    
1627  Name of the directory into which the relation files should be dumped.  Name of the entity type for the instance being deleted.
1628    
1629    =item objectID
1630    
1631    ID of the entity instance to be deleted. If the ID contains a wild card character (C<%>),
1632    then it is presumed to by a LIKE pattern.
1633    
1634    =item testFlag
1635    
1636    If TRUE, the delete statements will be traced without being executed.
1637    
1638    =item RETURN
1639    
1640    Returns a statistics object indicating how many records of each particular table were
1641    deleted.
1642    
1643  =back  =back
1644    
1645  =cut  =cut
1646    #: Return Type $%;
1647  sub DumpRelations {  sub Delete {
1648      # Get the parameters.      # Get the parameters.
1649      my ($self, $outputDirectory) = @_;      my ($self, $entityName, $objectID, $testFlag) = @_;
1650      # Now we need to run through all the relations. First, we loop through the entities.      # Declare the return variable.
1651      my $metaData = $self->{_metaData};      my $retVal = Stats->new();
1652      my $entities = $metaData->{Entities};      # Get the DBKernel object.
1653      for my $entityName (keys %{$entities}) {      my $db = $self->{_dbh};
1654          my $entityStructure = $entities->{$entityName};      # We're going to generate all the paths branching out from the starting entity. One of
1655          # Get the entity's relations.      # the things we have to be careful about is preventing loops. We'll use a hash to
1656          my $relationList = $entityStructure->{Relations};      # determine if we've hit a loop.
1657          # Loop through the relations, dumping them.      my %alreadyFound = ();
1658          for my $relationName (keys %{$relationList}) {      # These next lists will serve as our result stack. We start by pushing object lists onto
1659              my $relation = $relationList->{$relationName};      # the stack, and then popping them off to do the deletes. This means the deletes will
1660              $self->_DumpRelation($outputDirectory, $relationName, $relation);      # start with the longer paths before getting to the shorter ones. That, in turn, makes
1661        # sure we don't delete records that might be needed to forge relationships back to the
1662        # original item. We have two lists-- one for TO-relationships, and one for
1663        # FROM-relationships and entities.
1664        my @fromPathList = ();
1665        my @toPathList = ();
1666        # This final hash is used to remember what work still needs to be done. We push paths
1667        # onto the list, then pop them off to extend the paths. We prime it with the starting
1668        # point. Note that we will work hard to insure that the last item on a path in the
1669        # to-do list is always an entity.
1670        my @todoList = ([$entityName]);
1671        while (@todoList) {
1672            # Get the current path.
1673            my $current = pop @todoList;
1674            # Copy it into a list.
1675            my @stackedPath = @{$current};
1676            # Pull off the last item on the path. It will always be an entity.
1677            my $entityName = pop @stackedPath;
1678            # Add it to the alreadyFound list.
1679            $alreadyFound{$entityName} = 1;
1680            # Get the entity data.
1681            my $entityData = $self->_GetStructure($entityName);
1682            # The first task is to loop through the entity's relation. A DELETE command will
1683            # be needed for each of them.
1684            my $relations = $entityData->{Relations};
1685            for my $relation (keys %{$relations}) {
1686                my @augmentedList = (@stackedPath, $relation);
1687                push @fromPathList, \@augmentedList;
1688            }
1689            # Now we need to look for relationships connected to this entity.
1690            my $relationshipList = $self->{_metaData}->{Relationships};
1691            for my $relationshipName (keys %{$relationshipList}) {
1692                my $relationship = $relationshipList->{$relationshipName};
1693                # Check the FROM field. We're only interested if it's us.
1694                if ($relationship->{from} eq $entityName) {
1695                    # Add the path to this relationship.
1696                    my @augmentedList = (@stackedPath, $entityName, $relationshipName);
1697                    push @fromPathList, \@augmentedList;
1698                    # Check the arity. If it's MM we're done. If it's 1M
1699                    # and the target hasn't been seen yet, we want to
1700                    # stack the entity for future processing.
1701                    if ($relationship->{arity} eq '1M') {
1702                        my $toEntity = $relationship->{to};
1703                        if (! exists $alreadyFound{$toEntity}) {
1704                            # Here we have a new entity that's dependent on
1705                            # the current entity, so we need to stack it.
1706                            my @stackList = (@augmentedList, $toEntity);
1707                            push @fromPathList, \@stackList;
1708                        } else {
1709                            Trace("$toEntity ignored because it occurred previously.") if T(4);
1710                        }
1711                    }
1712                }
1713                # Now check the TO field. In this case only the relationship needs
1714                # deletion.
1715                if ($relationship->{to} eq $entityName) {
1716                    my @augmentedList = (@stackedPath, $entityName, $relationshipName);
1717                    push @toPathList, \@augmentedList;
1718          }          }
1719      }      }
     # Next, we loop through the relationships.  
     my $relationships = $metaData->{Relationships};  
     for my $relationshipName (keys %{$relationships}) {  
         my $relationshipStructure = $relationships->{$relationshipName};  
         # Dump this relationship's relation.  
         $self->_DumpRelation($outputDirectory, $relationshipName, $relationshipStructure->{Relations}->{$relationshipName});  
1720      }      }
1721        # Create the first qualifier for the WHERE clause. This selects the
1722        # keys of the primary entity records to be deleted. When we're deleting
1723        # from a dependent table, we construct a join page from the first qualifier
1724        # to the table containing the dependent records to delete.
1725        my $qualifier = ($objectID =~ /%/ ? "LIKE ?" : "= ?");
1726        # We need to make two passes. The first is through the to-list, and
1727        # the second through the from-list. The from-list is second because
1728        # the to-list may need to pass through some of the entities the
1729        # from-list would delete.
1730        my %stackList = ( from_link => \@fromPathList, to_link => \@toPathList );
1731        # Now it's time to do the deletes. We do it in two passes.
1732        for my $keyName ('to_link', 'from_link') {
1733            # Get the list for this key.
1734            my @pathList = @{$stackList{$keyName}};
1735            Trace(scalar(@pathList) . " entries in path list for $keyName.") if T(3);
1736            # Loop through this list.
1737            while (my $path = pop @pathList) {
1738                # Get the table whose rows are to be deleted.
1739                my @pathTables = @{$path};
1740                # Start the DELETE statement. We need to call DBKernel because the
1741                # syntax of a DELETE-USING varies among DBMSs.
1742                my $target = $pathTables[$#pathTables];
1743                my $stmt = $db->SetUsing(@pathTables);
1744                # Now start the WHERE. The first thing is the ID field from the starting table. That
1745                # starting table will either be the entity relation or one of the entity's
1746                # sub-relations.
1747                $stmt .= " WHERE $pathTables[0].id $qualifier";
1748                # Now we run through the remaining entities in the path, connecting them up.
1749                for (my $i = 1; $i <= $#pathTables; $i += 2) {
1750                    # Connect the current relationship to the preceding entity.
1751                    my ($entity, $rel) = @pathTables[$i-1,$i];
1752                    # The style of connection depends on the direction of the relationship.
1753                    $stmt .= " AND $entity.id = $rel.$keyName";
1754                    if ($i + 1 <= $#pathTables) {
1755                        # Here there's a next entity, so connect that to the relationship's
1756                        # to-link.
1757                        my $entity2 = $pathTables[$i+1];
1758                        $stmt .= " AND $rel.to_link = $entity2.id";
1759                    }
1760                }
1761                # Now we have our desired DELETE statement.
1762                if ($testFlag) {
1763                    # Here the user wants to trace without executing.
1764                    Trace($stmt) if T(0);
1765                } else {
1766                    # Here we can delete. Note that the SQL method dies with a confessing
1767                    # if an error occurs, so we just go ahead and do it.
1768                    Trace("Executing delete from $target using '$objectID'.") if T(3);
1769                    my $rv = $db->SQL($stmt, 0, $objectID);
1770                    # Accumulate the statistics for this delete. The only rows deleted
1771                    # are from the target table, so we use its name to record the
1772                    # statistic.
1773                    $retVal->Add($target, $rv);
1774                }
1775            }
1776        }
1777        # Return the result.
1778        return $retVal;
1779  }  }
1780    
1781  =head3 InsertObject  =head3 SortNeeded
1782    
1783  C<< my $ok = $database->InsertObject($objectType, \%fieldHash); >>  C<< my $parms = $erdb->SortNeeded($relationName); >>
1784    
1785  Insert an object into the database. The object is defined by a type name and then a hash  Return the pipe command for the sort that should be applied to the specified
1786  of field names to values. Field values in the primary relation are represented by scalars.  relation when creating the load file.
 (Note that for relationships, the primary relation is the B<only> relation.)  
 Field values for the other relations comprising the entity are always list references. For  
 example, the following line inserts an inactive PEG feature named C<fig|188.1.peg.1> with aliases  
 C<ZP_00210270.1> and C<gi|46206278>.  
1787    
1788  C<< $database->InsertObject('Feature', { id => 'fig|188.1.peg.1', active => 0, feature-type => 'peg', alias => ['ZP_00210270.1', 'gi|46206278']}); >>  For example, if the load file should be sorted ascending by the first
1789    field, this method would return
1790    
1791  The next statement inserts a C<HasProperty> relationship between feature C<fig|158879.1.peg.1> and      sort -k1 -t"\t"
 property C<4> with an evidence URL of C<http://seedu.uchicago.edu/query.cgi?article_id=142>.  
1792    
1793  C<< $database->InsertObject('HasProperty', { 'from-link' => 'fig|158879.1.peg.1', 'to-link' => 4, evidence = 'http://seedu.uchicago.edu/query.cgi?article_id=142'}); >>  If the first field is numeric, the method would return
1794    
1795  =over 4      sort -k1n -t"\t"
1796    
1797  =item newObjectType  Unfortunately, due to a bug in the C<sort> command, we cannot eliminate duplicate
1798    keys using a sort.
1799    
1800  Type name of the object to insert.  =over 4
1801    
1802  =item fieldHash  =item relationName
1803    
1804  Hash of field names to values.  Name of the relation to be examined.
1805    
1806  =item RETURN  =item
1807    
1808  Returns 1 if successful, 0 if an error occurred.  Returns the sort command to use for sorting the relation, suitable for piping.
1809    
1810    =back
1811    
1812    =cut
1813    #: Return Type $;
1814    sub SortNeeded {
1815        # Get the parameters.
1816        my ($self, $relationName) = @_;
1817        # Declare a descriptor to hold the names of the key fields.
1818        my @keyNames = ();
1819        # Get the relation structure.
1820        my $relationData = $self->_FindRelation($relationName);
1821        # Find out if the relation is a primary entity relation,
1822        # a relationship relation, or a secondary entity relation.
1823        my $entityTable = $self->{_metaData}->{Entities};
1824        my $relationshipTable = $self->{_metaData}->{Relationships};
1825        if (exists $entityTable->{$relationName}) {
1826            # Here we have a primary entity relation.
1827            push @keyNames, "id";
1828        } elsif (exists $relationshipTable->{$relationName}) {
1829            # Here we have a relationship. We sort using the FROM index.
1830            my $relationshipData = $relationshipTable->{$relationName};
1831            my $index = $relationData->{Indexes}->{idxFrom};
1832            push @keyNames, @{$index->{IndexFields}};
1833        } else {
1834            # Here we have a secondary entity relation, so we have a sort on the ID field.
1835            push @keyNames, "id";
1836        }
1837        # Now we parse the key names into sort parameters. First, we prime the return
1838        # string.
1839        my $retVal = "sort -t\"\t\" ";
1840        # Get the relation's field list.
1841        my @fields = @{$relationData->{Fields}};
1842        # Loop through the keys.
1843        for my $keyData (@keyNames) {
1844            # Get the key and the ordering.
1845            my ($keyName, $ordering);
1846            if ($keyData =~ /^([^ ]+) DESC/) {
1847                ($keyName, $ordering) = ($1, "descending");
1848            } else {
1849                ($keyName, $ordering) = ($keyData, "ascending");
1850            }
1851            # Find the key's position and type.
1852            my $fieldSpec;
1853            for (my $i = 0; $i <= $#fields && ! $fieldSpec; $i++) {
1854                my $thisField = $fields[$i];
1855                if ($thisField->{name} eq $keyName) {
1856                    # Get the sort modifier for this field type. The modifier
1857                    # decides whether we're using a character, numeric, or
1858                    # floating-point sort.
1859                    my $modifier = $TypeTable{$thisField->{type}}->{sort};
1860                    # If the index is descending for this field, denote we want
1861                    # to reverse the sort order on this field.
1862                    if ($ordering eq 'descending') {
1863                        $modifier .= "r";
1864                    }
1865                    # Store the position and modifier into the field spec, which
1866                    # will stop the inner loop. Note that the field number is
1867                    # 1-based in the sort command, so we have to increment the
1868                    # index.
1869                    $fieldSpec = ($i + 1) . $modifier;
1870                }
1871            }
1872            # Add this field to the sort command.
1873            $retVal .= " -k$fieldSpec";
1874        }
1875        # Return the result.
1876        return $retVal;
1877    }
1878    
1879    =head3 GetList
1880    
1881    C<< my @dbObjects = $erdb->GetList(\@objectNames, $filterClause, \@params); >>
1882    
1883    Return a list of object descriptors for the specified objects as determined by the
1884    specified filter clause.
1885    
1886    This method is essentially the same as L</Get> except it returns a list of objects rather
1887    than a query object that can be used to get the results one record at a time.
1888    
1889    =over 4
1890    
1891    =item objectNames
1892    
1893    List containing the names of the entity and relationship objects to be retrieved.
1894    
1895    =item filterClause
1896    
1897    WHERE clause (without the WHERE) to be used to filter and sort the query. The WHERE clause can
1898    be parameterized with parameter markers (C<?>). Each field used in the WHERE clause must be
1899    specified in the standard form B<I<objectName>(I<fieldName>)>. Any parameters specified
1900    in the filter clause should be added to the parameter list as additional parameters. The
1901    fields in a filter clause can come from primary entity relations, relationship relations,
1902    or secondary entity relations; however, all of the entities and relationships involved must
1903    be included in the list of object names.
1904    
1905    The filter clause can also specify a sort order. To do this, simply follow the filter string
1906    with an ORDER BY clause. For example, the following filter string gets all genomes for a
1907    particular genus and sorts them by species name.
1908    
1909    C<< "Genome(genus) = ? ORDER BY Genome(species)" >>
1910    
1911    The rules for field references in a sort order are the same as those for field references in the
1912    filter clause in general; however, odd things may happen if a sort field is from a secondary
1913    relation.
1914    
1915    =item params
1916    
1917    Reference to a list of parameter values to be substituted into the filter clause.
1918    
1919    =item RETURN
1920    
1921    Returns a list of B<DBObject>s that satisfy the query conditions.
1922    
1923    =back
1924    
1925    =cut
1926    #: Return Type @%
1927    sub GetList {
1928        # Get the parameters.
1929        my ($self, $objectNames, $filterClause, $params) = @_;
1930        # Declare the return variable.
1931        my @retVal = ();
1932        # Perform the query.
1933        my $query = $self->Get($objectNames, $filterClause, $params);
1934        # Loop through the results.
1935        while (my $object = $query->Fetch) {
1936            push @retVal, $object;
1937        }
1938        # Return the result.
1939        return @retVal;
1940    }
1941    
1942    =head3 GetCount
1943    
1944    C<< my $count = $erdb->GetCount(\@objectNames, $filter, \@params); >>
1945    
1946    Return the number of rows found by a specified query. This method would
1947    normally be used to count the records in a single table. For example, in a
1948    genetics database
1949    
1950        my $count = $erdb->GetCount(['Genome'], 'Genome(genus-species) LIKE ?', ['homo %']);
1951    
1952    would return the number of genomes for the genus I<homo>. It is conceivable, however,
1953    to use it to return records based on a join. For example,
1954    
1955        my $count = $erdb->GetCount(['HasFeature', 'Genome'], 'Genome(genus-species) LIKE ?',
1956                                    ['homo %']);
1957    
1958    would return the number of features for genomes in the genus I<homo>. Note that
1959    only the rows from the first table are counted. If the above command were
1960    
1961        my $count = $erdb->GetCount(['Genome', 'Feature'], 'Genome(genus-species) LIKE ?',
1962                                    ['homo %']);
1963    
1964    it would return the number of genomes, not the number of genome/feature pairs.
1965    
1966    =over 4
1967    
1968    =item objectNames
1969    
1970    Reference to a list of the objects (entities and relationships) included in the
1971    query.
1972    
1973    =item filter
1974    
1975    A filter clause for restricting the query. The rules are the same as for the L</Get>
1976    method.
1977    
1978    =item params
1979    
1980    Reference to a list of the parameter values to be substituted for the parameter marks
1981    in the filter.
1982    
1983    =item RETURN
1984    
1985    Returns a count of the number of records in the first table that would satisfy
1986    the query.
1987    
1988    =back
1989    
1990    =cut
1991    
1992    sub GetCount {
1993        # Get the parameters.
1994        my ($self, $objectNames, $filter, $params) = @_;
1995        # Insure the params argument is an array reference if the caller left it off.
1996        if (! defined($params)) {
1997            $params = [];
1998        }
1999        # Declare the return variable.
2000        my $retVal;
2001        # Find out if we're counting an entity or a relationship.
2002        my $countedField;
2003        if ($self->IsEntity($objectNames->[0])) {
2004            $countedField = "id";
2005        } else {
2006            # For a relationship we count the to-link because it's usually more
2007            # numerous. Note we're automatically converting to the SQL form
2008            # of the field name (to_link vs. to-link).
2009            $countedField = "to_link";
2010        }
2011        # Create the SQL command suffix to get the desired records.
2012        my ($suffix, $mappedNameListRef, $mappedNameHashRef) = $self->_SetupSQL($objectNames,
2013                                                                                $filter);
2014        # Prefix it with text telling it we want a record count.
2015        my $firstObject = $mappedNameListRef->[0];
2016        my $command = "SELECT COUNT($firstObject.$countedField) $suffix";
2017        # Prepare and execute the command.
2018        my $sth = $self->_GetStatementHandle($command, $params);
2019        # Get the count value.
2020        ($retVal) = $sth->fetchrow_array();
2021        # Check for a problem.
2022        if (! defined($retVal)) {
2023            if ($sth->err) {
2024                # Here we had an SQL error.
2025                Confess("Error retrieving row count: " . $sth->errstr());
2026            } else {
2027                # Here we have no result.
2028                Confess("No result attempting to retrieve row count.");
2029            }
2030        }
2031        # Return the result.
2032        return $retVal;
2033    }
2034    
2035    =head3 ComputeObjectSentence
2036    
2037    C<< my $sentence = $erdb->ComputeObjectSentence($objectName); >>
2038    
2039    Check an object name, and if it is a relationship convert it to a relationship sentence.
2040    
2041    =over 4
2042    
2043    =item objectName
2044    
2045    Name of the entity or relationship.
2046    
2047    =item RETURN
2048    
2049    Returns a string containing the entity name or a relationship sentence.
2050    
2051    =back
2052    
2053    =cut
2054    
2055    sub ComputeObjectSentence {
2056        # Get the parameters.
2057        my ($self, $objectName) = @_;
2058        # Set the default return value.
2059        my $retVal = $objectName;
2060        # Look for the object as a relationship.
2061        my $relTable = $self->{_metaData}->{Relationships};
2062        if (exists $relTable->{$objectName}) {
2063            # Get the relationship sentence.
2064            $retVal = _ComputeRelationshipSentence($objectName, $relTable->{$objectName});
2065        }
2066        # Return the result.
2067        return $retVal;
2068    }
2069    
2070    =head3 DumpRelations
2071    
2072    C<< $erdb->DumpRelations($outputDirectory); >>
2073    
2074    Write the contents of all the relations to tab-delimited files in the specified directory.
2075    Each file will have the same name as the relation dumped, with an extension of DTX.
2076    
2077    =over 4
2078    
2079    =item outputDirectory
2080    
2081    Name of the directory into which the relation files should be dumped.
2082    
2083    =back
2084    
2085    =cut
2086    
2087    sub DumpRelations {
2088        # Get the parameters.
2089        my ($self, $outputDirectory) = @_;
2090        # Now we need to run through all the relations. First, we loop through the entities.
2091        my $metaData = $self->{_metaData};
2092        my $entities = $metaData->{Entities};
2093        for my $entityName (keys %{$entities}) {
2094            my $entityStructure = $entities->{$entityName};
2095            # Get the entity's relations.
2096            my $relationList = $entityStructure->{Relations};
2097            # Loop through the relations, dumping them.
2098            for my $relationName (keys %{$relationList}) {
2099                my $relation = $relationList->{$relationName};
2100                $self->_DumpRelation($outputDirectory, $relationName, $relation);
2101            }
2102        }
2103        # Next, we loop through the relationships.
2104        my $relationships = $metaData->{Relationships};
2105        for my $relationshipName (keys %{$relationships}) {
2106            my $relationshipStructure = $relationships->{$relationshipName};
2107            # Dump this relationship's relation.
2108            $self->_DumpRelation($outputDirectory, $relationshipName, $relationshipStructure->{Relations}->{$relationshipName});
2109        }
2110    }
2111    
2112    =head3 InsertValue
2113    
2114    C<< $erdb->InsertValue($entityID, $fieldName, $value); >>
2115    
2116    This method will insert a new value into the database. The value must be one
2117    associated with a secondary relation, since primary values cannot be inserted:
2118    they occur exactly once. Secondary values, on the other hand, can be missing
2119    or multiply-occurring.
2120    
2121    =over 4
2122    
2123    =item entityID
2124    
2125    ID of the object that is to receive the new value.
2126    
2127    =item fieldName
2128    
2129    Field name for the new value-- this includes the entity name, since
2130    field names are of the format I<objectName>C<(>I<fieldName>C<)>.
2131    
2132    =item value
2133    
2134    New value to be put in the field.
2135    
2136    =back
2137    
2138    =cut
2139    
2140    sub InsertValue {
2141        # Get the parameters.
2142        my ($self, $entityID, $fieldName, $value) = @_;
2143        # Parse the entity name and the real field name.
2144        if ($fieldName =~ /^([^(]+)\(([^)]+)\)/) {
2145            my $entityName = $1;
2146            my $fieldTitle = $2;
2147            # Get its descriptor.
2148            if (!$self->IsEntity($entityName)) {
2149                Confess("$entityName is not a valid entity.");
2150            } else {
2151                my $entityData = $self->{_metaData}->{Entities}->{$entityName};
2152                # Find the relation containing this field.
2153                my $fieldHash = $entityData->{Fields};
2154                if (! exists $fieldHash->{$fieldTitle}) {
2155                    Confess("$fieldTitle not found in $entityName.");
2156                } else {
2157                    my $relation = $fieldHash->{$fieldTitle}->{relation};
2158                    if ($relation eq $entityName) {
2159                        Confess("Cannot do InsertValue on primary field $fieldTitle of $entityName.");
2160                    } else {
2161                        # Now we can create an INSERT statement.
2162                        my $dbh = $self->{_dbh};
2163                        my $fixedName = _FixName($fieldTitle);
2164                        my $statement = "INSERT INTO $relation (id, $fixedName) VALUES(?, ?)";
2165                        # Execute the command.
2166                        $dbh->SQL($statement, 0, $entityID, $value);
2167                    }
2168                }
2169            }
2170        } else {
2171            Confess("$fieldName is not a valid field name.");
2172        }
2173    }
2174    
2175    =head3 InsertObject
2176    
2177    C<< my $ok = $erdb->InsertObject($objectType, \%fieldHash); >>
2178    
2179    Insert an object into the database. The object is defined by a type name and then a hash
2180    of field names to values. Field values in the primary relation are represented by scalars.
2181    (Note that for relationships, the primary relation is the B<only> relation.)
2182    Field values for the other relations comprising the entity are always list references. For
2183    example, the following line inserts an inactive PEG feature named C<fig|188.1.peg.1> with aliases
2184    C<ZP_00210270.1> and C<gi|46206278>.
2185    
2186    C<< $erdb->InsertObject('Feature', { id => 'fig|188.1.peg.1', active => 0, feature-type => 'peg', alias => ['ZP_00210270.1', 'gi|46206278']}); >>
2187    
2188    The next statement inserts a C<HasProperty> relationship between feature C<fig|158879.1.peg.1> and
2189    property C<4> with an evidence URL of C<http://seedu.uchicago.edu/query.cgi?article_id=142>.
2190    
2191    C<< $erdb->InsertObject('HasProperty', { 'from-link' => 'fig|158879.1.peg.1', 'to-link' => 4, evidence => 'http://seedu.uchicago.edu/query.cgi?article_id=142'}); >>
2192    
2193    =over 4
2194    
2195    =item newObjectType
2196    
2197    Type name of the object to insert.
2198    
2199    =item fieldHash
2200    
2201    Hash of field names to values.
2202    
2203    =item RETURN
2204    
2205    Returns 1 if successful, 0 if an error occurred.
2206    
2207  =back  =back
2208    
# Line 1250  Line 2313 
2313    
2314  =head3 LoadTable  =head3 LoadTable
2315    
2316  C<< my %results = $database->LoadTable($fileName, $relationName, $truncateFlag); >>  C<< my %results = $erdb->LoadTable($fileName, $relationName, $truncateFlag); >>
2317    
2318  Load data from a tab-delimited file into a specified table, optionally re-creating the table  Load data from a tab-delimited file into a specified table, optionally re-creating the table
2319  first.  first.
# Line 1271  Line 2334 
2334    
2335  =item RETURN  =item RETURN
2336    
2337  Returns a statistical object containing the number of records read and a list of  Returns a statistical object containing a list of the error messages.
 the error messages.  
2338    
2339  =back  =back
2340    
# Line 1286  Line 2348 
2348      Trace("Loading table $relationName from $fileName") if T(2);      Trace("Loading table $relationName from $fileName") if T(2);
2349      # Get the database handle.      # Get the database handle.
2350      my $dbh = $self->{_dbh};      my $dbh = $self->{_dbh};
2351        # Get the input file size.
2352        my $fileSize = -s $fileName;
2353      # Get the relation data.      # Get the relation data.
2354      my $relation = $self->_FindRelation($relationName);      my $relation = $self->_FindRelation($relationName);
2355      # Check the truncation flag.      # Check the truncation flag.
2356      if ($truncateFlag) {      if ($truncateFlag) {
2357          Trace("Creating table $relationName") if T(2);          Trace("Creating table $relationName") if T(2);
2358            # Compute the row count estimate. We take the size of the load file,
2359            # divide it by the estimated row size, and then multiply by 1.5 to
2360            # leave extra room. We postulate a minimum row count of 1000 to
2361            # prevent problems with incoming empty load files.
2362            my $rowSize = $self->EstimateRowSize($relationName);
2363            my $estimate = FIG::max($fileSize * 1.5 / $rowSize, 1000);
2364          # Re-create the table without its index.          # Re-create the table without its index.
2365          $self->CreateTable($relationName, 0);          $self->CreateTable($relationName, 0, $estimate);
2366          # If this is a pre-index DBMS, create the index here.          # If this is a pre-index DBMS, create the index here.
2367          if ($dbh->{_preIndex}) {          if ($dbh->{_preIndex}) {
2368              eval {              eval {
# Line 1303  Line 2373 
2373              }              }
2374          }          }
2375      }      }
     # Determine whether or not this is a primary relation. Primary relations have an extra  
     # field indicating whether or not a given object is new or was loaded from the flat files.  
     my $primary = $self->_IsPrimary($relationName);  
     # Get the number of fields in this relation.  
     my @fieldList = @{$relation->{Fields}};  
     my $fieldCount = @fieldList;  
     # Start a database transaction.  
     $dbh->begin_tran;  
     # Open the relation file. We need to create a cleaned-up copy before loading.  
     open TABLEIN, '<', $fileName;  
     my $tempName = "$fileName.tbl";  
     open TABLEOUT, '>', $tempName;  
     my $inputCount = 0;  
     # Loop through the file.  
     while (<TABLEIN>) {  
         $inputCount++;  
         # Chop off the new-line character.  
         my $record = Tracer::Strip($_);  
         # Only proceed if the record is non-blank.  
         if ($record) {  
             # Escape all the backslashes found in the line.  
             $record =~ s/\\/\\\\/g;  
             # Insure the number of fields is correct.  
             my @fields = split /\t/, $record;  
             while (@fields > $fieldCount) {  
                 my $extraField = $fields[$#fields];  
                 delete $fields[$#fields];  
                 if ($extraField) {  
                     Trace("Nonblank extra field value \"$extraField\" deleted from record $inputCount of $fileName.") if T(1);  
                 }  
             }  
             while (@fields < $fieldCount) {  
                 push @fields, "";  
             }  
             # If this is a primary relation, add a 0 for the new-record flag (indicating that  
             # this record is not new, but part of the original load).  
             if ($primary) {  
                 push @fields, "0";  
             }  
             # Write the record.  
             $record = join "\t", @fields;  
             print TABLEOUT "$record\n";  
             # Count the record written.  
             my $count = $retVal->Add('records');  
             my $len = length $record;  
             Trace("Record $count written with $len characters.") if T(4);  
         } else {  
             # Here we have a blank record.  
             $retVal->Add('skipped');  
         }  
     }  
     # Close the files.  
     close TABLEIN;  
     close TABLEOUT;  
     Trace("Temporary file $tempName created.") if T(2);  
2376      # Load the table.      # Load the table.
2377      my $rv;      my $rv;
2378      eval {      eval {
2379          $rv = $dbh->load_table(file => $tempName, tbl => $relationName);          $rv = $dbh->load_table(file => $fileName, tbl => $relationName);
2380      };      };
2381      if (!defined $rv) {      if (!defined $rv) {
2382          $retVal->AddMessage($@) if ($@);          $retVal->AddMessage($@) if ($@);
2383          $retVal->AddMessage("Table load failed for $relationName using $tempName.");          $retVal->AddMessage("Table load failed for $relationName using $fileName: " . $dbh->error_message);
2384          Trace("Table load failed for $relationName.") if T(1);          Trace("Table load failed for $relationName.") if T(1);
2385      } else {      } else {
2386          # Here we successfully loaded the table. Trace the number of records loaded.          # Here we successfully loaded the table.
2387          Trace("$retVal->{records} records read for $relationName.") if T(2);          $retVal->Add("tables");
2388            my $size = -s $fileName;
2389            Trace("$size bytes loaded into $relationName.") if T(2);
2390          # If we're rebuilding, we need to create the table indexes.          # If we're rebuilding, we need to create the table indexes.
2391          if ($truncateFlag && ! $dbh->{_preIndex}) {          if ($truncateFlag) {
2392                # Indexes are created here for PostGres. For PostGres, indexes are
2393                # best built at the end. For MySQL, the reverse is true.
2394                if (! $dbh->{_preIndex}) {
2395              eval {              eval {
2396                  $self->CreateIndex($relationName);                  $self->CreateIndex($relationName);
2397              };              };
# Line 1379  Line 2399 
2399                  $retVal->AddMessage($@);                  $retVal->AddMessage($@);
2400              }              }
2401          }          }
2402                # The full-text index (if any) is always built last, even for MySQL.
2403                # First we need to see if this table has a full-text index. Only
2404                # primary relations are allowed that privilege.
2405                if ($self->_IsPrimary($relationName)) {
2406                    # Get the relation's entity/relationship structure.
2407                    my $structure = $self->_GetStructure($relationName);
2408                    # Check for a searchable fields list.
2409                    if (exists $structure->{searchFields}) {
2410                        # Here we know that we need to create a full-text search index.
2411                        # Get an SQL-formatted field name list.
2412                        my $fields = join(", ", $self->_FixNames(@{$structure->{searchFields}}));
2413                        # Create the index.
2414                        $dbh->create_index(tbl => $relationName, idx => "search_idx",
2415                                           flds => $fields, kind => 'fulltext');
2416                    }
2417                }
2418            }
2419      }      }
2420      # Commit the database changes.      # Analyze the table to improve performance.
2421      $dbh->commit_tran;      Trace("Analyzing and compacting $relationName.") if T(3);
2422      # Delete the temporary file.      $dbh->vacuum_it($relationName);
2423      unlink $tempName;      Trace("$relationName load completed.") if T(3);
2424      # Return the statistics.      # Return the statistics.
2425      return $retVal;      return $retVal;
2426  }  }
2427    
2428  =head3 GenerateEntity  =head3 DropRelation
2429    
2430  C<< my $fieldHash = $database->GenerateEntity($id, $type, \%values); >>  C<< $erdb->DropRelation($relationName); >>
2431    
2432  Generate the data for a new entity instance. This method creates a field hash suitable for  Physically drop a relation from the database.
 passing as a parameter to L</InsertObject>. The ID is specified by the callr, but the rest  
 of the fields are generated using information in the database schema.  
   
 Each data type has a default algorithm for generating random test data. This can be overridden  
 by including a B<DataGen> element in the field. If this happens, the content of the element is  
 executed as a PERL program in the context of this module. The element may make use of a C<$this>  
 variable which contains the field hash as it has been built up to the current point. If any  
 fields are dependent on other fields, the C<pass> attribute can be used to control the order  
 in which the fields are generated. A field with a high data pass number will be generated after  
 a field with a lower one. If any external values are needed, they should be passed in via the  
 optional third parameter, which will be available to the data generation script under the name  
 C<$value>. Several useful utility methods are provided for generating random values, including  
 L</IntGen>, L</StringGen>, L</FloatGen>, and L</DateGen>. Note that dates are stored and generated  
 in the form of a timestamp number rather than a string.  
2433    
2434  =over 4  =over 4
2435    
2436  =item id  =item relationName
2437    
2438  ID to assign to the new entity.  Name of the relation to drop. If it does not exist, this method will have
2439    no effect.
2440    
2441  =item type  =back
   
 Type name for the new entity.  
   
 =item values  
   
 Hash containing additional values that might be needed by the data generation methods (optional).  
   
 =back  
2442    
2443  =cut  =cut
2444    
2445  sub GenerateEntity {  sub DropRelation {
2446      # Get the parameters.      # Get the parameters.
2447      my ($self, $id, $type, $values) = @_;      my ($self, $relationName) = @_;
2448      # Create the return hash.      # Get the database handle.
2449      my $this = { id => $id };      my $dbh = $self->{_dbh};
2450      # Get the metadata structure.      # Drop the relation. The method used here has no effect if the relation
2451      my $metadata = $self->{_metaData};      # does not exist.
2452      # Get this entity's list of fields.      Trace("Invoking DB Kernel to drop $relationName.") if T(3);
2453      if (!exists $metadata->{Entities}->{$type}) {      $dbh->drop_table(tbl => $relationName);
         Confess("Unrecognized entity type $type in GenerateEntity.");  
     } else {  
         my $entity = $metadata->{Entities}->{$type};  
         my $fields = $entity->{Fields};  
         # Generate data from the fields.  
         _GenerateFields($this, $fields, $type, $values);  
     }  
     # Return the hash created.  
     return $this;  
2454  }  }
2455    
2456  =head3 GetEntity  =head3 GetEntity
2457    
2458  C<< my $entityObject = $sprout->GetEntity($entityType, $ID); >>  C<< my $entityObject = $erdb->GetEntity($entityType, $ID); >>
2459    
2460  Return an object describing the entity instance with a specified ID.  Return an object describing the entity instance with a specified ID.
2461    
# Line 1475  Line 2482 
2482      # Get the parameters.      # Get the parameters.
2483      my ($self, $entityType, $ID) = @_;      my ($self, $entityType, $ID) = @_;
2484      # Create a query.      # Create a query.
2485      my $query = $self->Get([$entityType], "$entityType(id) = ?", $ID);      my $query = $self->Get([$entityType], "$entityType(id) = ?", [$ID]);
2486      # Get the first (and only) object.      # Get the first (and only) object.
2487      my $retVal = $query->Fetch();      my $retVal = $query->Fetch();
2488      # Return the result.      # Return the result.
2489      return $retVal;      return $retVal;
2490  }  }
2491    
2492    =head3 GetChoices
2493    
2494    C<< my @values = $erdb->GetChoices($entityName, $fieldName); >>
2495    
2496    Return a list of all the values for the specified field that are represented in the
2497    specified entity.
2498    
2499    Note that if the field is not indexed, then this will be a very slow operation.
2500    
2501    =over 4
2502    
2503    =item entityName
2504    
2505    Name of an entity in the database.
2506    
2507    =item fieldName
2508    
2509    Name of a field belonging to the entity. This is a raw field name without
2510    the standard parenthesized notation used in most calls.
2511    
2512    =item RETURN
2513    
2514    Returns a list of the distinct values for the specified field in the database.
2515    
2516    =back
2517    
2518    =cut
2519    
2520    sub GetChoices {
2521        # Get the parameters.
2522        my ($self, $entityName, $fieldName) = @_;
2523        # Declare the return variable.
2524        my @retVal;
2525        # Get the entity data structure.
2526        my $entityData = $self->_GetStructure($entityName);
2527        # Get the field.
2528        my $fieldHash = $entityData->{Fields};
2529        if (! exists $fieldHash->{$fieldName}) {
2530            Confess("$fieldName not found in $entityName.");
2531        } else {
2532            # Get the name of the relation containing the field.
2533            my $relation = $fieldHash->{$fieldName}->{relation};
2534            # Fix up the field name.
2535            my $realName = _FixName($fieldName);
2536            # Get the database handle.
2537            my $dbh = $self->{_dbh};
2538            # Query the database.
2539            my $results = $dbh->SQL("SELECT DISTINCT $realName FROM $relation");
2540            # Clean the results. They are stored as a list of lists, and we just want the one list.
2541            @retVal = sort map { $_->[0] } @{$results};
2542        }
2543        # Return the result.
2544        return @retVal;
2545    }
2546    
2547  =head3 GetEntityValues  =head3 GetEntityValues
2548    
2549  C<< my @values = GetEntityValues($entityType, $ID, \@fields); >>  C<< my @values = $erdb->GetEntityValues($entityType, $ID, \@fields); >>
2550    
2551  Return a list of values from a specified entity instance.  Return a list of values from a specified entity instance. If the entity instance
2552    does not exist, an empty list is returned.
2553    
2554  =over 4  =over 4
2555    
# Line 1527  Line 2590 
2590    
2591  =head3 GetAll  =head3 GetAll
2592    
2593  C<< my @list = $sprout->GetAll(\@objectNames, $filterClause, \@parameters, \@fields, $count); >>  C<< my @list = $erdb->GetAll(\@objectNames, $filterClause, \@parameters, \@fields, $count); >>
2594    
2595  Return a list of values taken from the objects returned by a query. The first three  Return a list of values taken from the objects returned by a query. The first three
2596  parameters correspond to the parameters of the L</Get> method. The final parameter is  parameters correspond to the parameters of the L</Get> method. The final parameter is
# Line 1543  Line 2606 
2606  spreadsheet cell, and each feature will be represented by a list containing the  spreadsheet cell, and each feature will be represented by a list containing the
2607  feature ID followed by all of its aliases.  feature ID followed by all of its aliases.
2608    
2609  C<< $query = $sprout->Get(['ContainsFeature', 'Feature'], "ContainsFeature(from-link) = ?", [$ssCellID], ['Feature(id)', 'Feature(alias)']); >>  C<< $query = $erdb->Get(['ContainsFeature', 'Feature'], "ContainsFeature(from-link) = ?", [$ssCellID], ['Feature(id)', 'Feature(alias)']); >>
2610    
2611  =over 4  =over 4
2612    
# Line 1588  Line 2651 
2651      # list is a scalar we convert it into a singleton list.      # list is a scalar we convert it into a singleton list.
2652      my @parmList = ();      my @parmList = ();
2653      if (ref $parameterList eq "ARRAY") {      if (ref $parameterList eq "ARRAY") {
2654            Trace("GetAll parm list is an array.") if T(4);
2655          @parmList = @{$parameterList};          @parmList = @{$parameterList};
2656      } else {      } else {
2657            Trace("GetAll parm list is a scalar: $parameterList.") if T(4);
2658          push @parmList, $parameterList;          push @parmList, $parameterList;
2659      }      }
     # Create the query.  
     my $query = $self->Get($objectNames, $filterClause, @parmList);  
     # Set up a counter of the number of records read.  
     my $fetched = 0;  
2660      # Insure the counter has a value.      # Insure the counter has a value.
2661      if (!defined $count) {      if (!defined $count) {
2662          $count = 0;          $count = 0;
2663      }      }
2664        # Add the row limit to the filter clause.
2665        if ($count > 0) {
2666            $filterClause .= " LIMIT $count";
2667        }
2668        # Create the query.
2669        my $query = $self->Get($objectNames, $filterClause, \@parmList);
2670        # Set up a counter of the number of records read.
2671        my $fetched = 0;
2672      # Loop through the records returned, extracting the fields. Note that if the      # Loop through the records returned, extracting the fields. Note that if the
2673      # counter is non-zero, we stop when the number of records read hits the count.      # counter is non-zero, we stop when the number of records read hits the count.
2674      my @retVal = ();      my @retVal = ();
# Line 1608  Line 2677 
2677          push @retVal, \@rowData;          push @retVal, \@rowData;
2678          $fetched++;          $fetched++;
2679      }      }
2680        Trace("$fetched rows returned in GetAll.") if T(SQL => 4);
2681      # Return the resulting list.      # Return the resulting list.
2682      return @retVal;      return @retVal;
2683  }  }
2684    
2685  =head2 Internal Utility Methods  =head3 Exists
2686    
2687  =head3 GetLoadStats  C<< my $found = $sprout->Exists($entityName, $entityID); >>
2688    
2689  Return a blank statistics object for use by the load methods.  Return TRUE if an entity exists, else FALSE.
2690    
2691  This is a static method.  =over 4
2692    
2693    =item entityName
2694    
2695    Name of the entity type (e.g. C<Feature>) relevant to the existence check.
2696    
2697    =item entityID
2698    
2699    ID of the entity instance whose existence is to be checked.
2700    
2701    =item RETURN
2702    
2703    Returns TRUE if the entity instance exists, else FALSE.
2704    
2705    =back
2706    
2707  =cut  =cut
2708    #: Return Type $;
2709    sub Exists {
2710        # Get the parameters.
2711        my ($self, $entityName, $entityID) = @_;
2712        # Check for the entity instance.
2713        Trace("Checking existence of $entityName with ID=$entityID.") if T(4);
2714        my $testInstance = $self->GetEntity($entityName, $entityID);
2715        # Return an existence indicator.
2716        my $retVal = ($testInstance ? 1 : 0);
2717        return $retVal;
2718    }
2719    
2720  sub _GetLoadStats {  =head3 EstimateRowSize
2721      return Stats->new('records');  
2722    C<< my $rowSize = $erdb->EstimateRowSize($relName); >>
2723    
2724    Estimate the row size of the specified relation. The estimated row size is computed by adding
2725    up the average length for each data type.
2726    
2727    =over 4
2728    
2729    =item relName
2730    
2731    Name of the relation whose estimated row size is desired.
2732    
2733    =item RETURN
2734    
2735    Returns an estimate of the row size for the specified relation.
2736    
2737    =back
2738    
2739    =cut
2740    #: Return Type $;
2741    sub EstimateRowSize {
2742        # Get the parameters.
2743        my ($self, $relName) = @_;
2744        # Declare the return variable.
2745        my $retVal = 0;
2746        # Find the relation descriptor.
2747        my $relation = $self->_FindRelation($relName);
2748        # Get the list of fields.
2749        for my $fieldData (@{$relation->{Fields}}) {
2750            # Get the field type and add its length.
2751            my $fieldLen = $TypeTable{$fieldData->{type}}->{avgLen};
2752            $retVal += $fieldLen;
2753        }
2754        # Return the result.
2755        return $retVal;
2756  }  }
2757    
2758  =head3 GenerateFields  =head3 GetFieldTable
2759    
2760  Generate field values from a field structure and store in a specified table. The field names  C<< my $fieldHash = $self->GetFieldTable($objectnName); >>
 are first sorted by pass count, certain pre-defined fields are removed from the list, and  
 then we rip through them evaluation the data generation string. Fields in the primary relation  
 are stored as scalars; fields in secondary relations are stored as value lists.  
2761    
2762  This is a static method.  Get the field structure for a specified entity or relationship.
2763    
2764  =over 4  =over 4
2765    
2766  =item this  =item objectName
2767    
2768  Hash table into which the field values should be placed.  Name of the desired entity or relationship.
2769    
2770  =item fields  =item RETURN
2771    
2772  Field structure from which the field descriptors should be taken.  The table containing the field descriptors for the specified object.
2773    
2774  =item type  =back
2775    
2776  Type name of the object whose fields are being generated.  =cut
2777    
2778  =item values (optional)  sub GetFieldTable {
2779        # Get the parameters.
2780        my ($self, $objectName) = @_;
2781        # Get the descriptor from the metadata.
2782        my $objectData = $self->_GetStructure($objectName);
2783        # Return the object's field table.
2784        return $objectData->{Fields};
2785    }
2786    
2787  Reference to a value structure from which additional values can be taken.  =head3 SplitKeywords
2788    
2789    C<< my @keywords = ERDB::SplitKeywords($keywordString); >>
2790    
2791    This method returns a list of the positive keywords in the specified
2792    keyword string. All of the operators will have been stripped off,
2793    and if the keyword is preceded by a minus operator (C<->), it will
2794    not be in the list returned. The idea here is to get a list of the
2795    keywords the user wants to see. The list will be processed to remove
2796    duplicates.
2797    
2798    It is possible to create a string that confuses this method. For example
2799    
2800        frog toad -frog
2801    
2802    would return both C<frog> and C<toad>. If this is a problem we can deal
2803    with it later.
2804    
2805    =over 4
2806    
2807  =item from (optiona)  =item keywordString
2808    
2809  Reference to the source entity instance if relationship data is being generated.  The keyword string to be parsed.
2810    
2811  =item to (optional)  =item RETURN
2812    
2813  Reference to the target entity instance if relationship data is being generated.  Returns a list of the words in the keyword string the user wants to
2814    see.
2815    
2816  =back  =back
2817    
2818  =cut  =cut
2819    
2820  sub _GenerateFields {  sub SplitKeywords {
2821      # Get the parameters.      # Get the parameters.
2822      my ($this, $fields, $type, $values, $from, $to) = @_;      my ($keywordString) = @_;
2823      # Sort the field names by pass number.      # Make a safety copy of the string. (This helps during debugging.)
2824      my @fieldNames = sort { $fields->{$a}->{DataGen}->{pass} <=> $fields->{$b}->{DataGen}->{pass} } keys %{$fields};      my $workString = $keywordString;
2825      # Loop through the field names, generating data.      # Convert operators we don't care about to spaces.
2826      for my $name (@fieldNames) {      $workString =~ tr/+"()<>/ /;
2827          # Only proceed if this field needs to be generated.      # Split the rest of the string along space boundaries. Note that we
2828          if (!exists $this->{$name}) {      # eliminate any words that are zero length or begin with a minus sign.
2829              # Get this field's data generation descriptor.      my @wordList = grep { $_ && substr($_, 0, 1) ne "-" } split /\s+/, $workString;
2830              my $fieldDescriptor = $fields->{$name};      # Use a hash to remove duplicates.
2831              my $data = $fieldDescriptor->{DataGen};      my %words = map { $_ => 1 } @wordList;
2832              # Get the code to generate the field value.      # Return the result.
2833              my $codeString = $data->{content};      return sort keys %words;
2834              # Determine whether or not this field is in the primary relation.  }
2835              if ($fieldDescriptor->{relation} eq $type) {  
2836                  # Here we have a primary relation field. Store the field value as  =head3 ValidateFieldName
2837                  # a scalar.  
2838                  $this->{$name} = eval($codeString);  C<< my $okFlag = ERDB::ValidateFieldName($fieldName); >>
2839    
2840    Return TRUE if the specified field name is valid, else FALSE. Valid field names must
2841    be hyphenated words subject to certain restrictions.
2842    
2843    =over 4
2844    
2845    =item fieldName
2846    
2847    Field name to be validated.
2848    
2849    =item RETURN
2850    
2851    Returns TRUE if the field name is valid, else FALSE.
2852    
2853    =back
2854    
2855    =cut
2856    
2857    sub ValidateFieldName {
2858        # Get the parameters.
2859        my ($fieldName) = @_;
2860        # Declare the return variable. The field name is valid until we hear
2861        # differently.
2862        my $retVal = 1;
2863        # Look for bad stuff in the name.
2864        if ($fieldName =~ /--/) {
2865            # Here we have a doubled minus sign.
2866            Trace("Field name $fieldName has a doubled hyphen.") if T(1);
2867            $retVal = 0;
2868        } elsif ($fieldName !~ /^[A-Za-z]/) {
2869            # Here the field name is missing the initial letter.
2870            Trace("Field name $fieldName does not begin with a letter.") if T(1);
2871            $retVal = 0;
2872              } else {              } else {
2873                  # Here we have a secondary relation field. Create a null list          # Strip out the minus signs. Everything remaining must be a letter,
2874                  # and push the desired number of field values onto it.          # underscore, or digit.
2875                  my @fieldValues = ();          my $strippedName = $fieldName;
2876                  my $count = IntGen(0,$data->{testCount});          $strippedName =~ s/-//g;
2877                  for (my $i = 0; $i < $count; $i++) {          if ($strippedName !~ /^(\w|\d)+$/) {
2878                      my $newValue = eval($codeString);              Trace("Field name $fieldName contains illegal characters.") if T(1);
2879                      push @fieldValues, $newValue;              $retVal = 0;
2880                  }                  }
                 # Store the value list in the main hash.  
                 $this->{$name} = \@fieldValues;  
2881              }              }
2882        # Return the result.
2883        return $retVal;
2884          }          }
2885    
2886    =head3 ReadMetaXML
2887    
2888    C<< my $rawMetaData = ERDB::ReadDBD($fileName); >>
2889    
2890    This method reads a raw database definition XML file and returns it.
2891    Normally, the metadata used by the ERDB system has been processed and
2892    modified to make it easier to load and retrieve the data; however,
2893    this method can be used to get the data in its raw form.
2894    
2895    =over 4
2896    
2897    =item fileName
2898    
2899    Name of the XML file to read.
2900    
2901    =item RETURN
2902    
2903    Returns a hash reference containing the raw XML data from the specified file.
2904    
2905    =back
2906    
2907    =cut
2908    
2909    sub ReadMetaXML {
2910        # Get the parameters.
2911        my ($fileName) = @_;
2912        # Read the XML.
2913        my $retVal = XML::Simple::XMLin($fileName, %XmlOptions, %XmlInOpts);
2914        Trace("XML metadata loaded from file $fileName.") if T(1);
2915        # Return the result.
2916        return $retVal;
2917    }
2918    
2919    =head3 GetEntityFieldHash
2920    
2921    C<< my $fieldHashRef = ERDB::GetEntityFieldHash($structure, $entityName); >>
2922    
2923    Get the field hash of the named entity in the specified raw XML structure.
2924    The field hash may not exist, in which case we need to create it.
2925    
2926    =over 4
2927    
2928    =item structure
2929    
2930    Raw XML structure defininng the database. This is not the run-time XML used by
2931    an ERDB object, since that has all sorts of optimizations built-in.
2932    
2933    =item entityName
2934    
2935    Name of the entity whose field structure is desired.
2936    
2937    =item RETURN
2938    
2939    Returns the field hash used to define the entity's fields.
2940    
2941    =back
2942    
2943    =cut
2944    
2945    sub GetEntityFieldHash {
2946        # Get the parameters.
2947        my ($structure, $entityName) = @_;
2948        # Get the entity structure.
2949        my $entityData = $structure->{Entities}->{$entityName};
2950        # Look for a field structure.
2951        my $retVal = $entityData->{Fields};
2952        # If it doesn't exist, create it.
2953        if (! defined($retVal)) {
2954            $entityData->{Fields} = {};
2955            $retVal = $entityData->{Fields};
2956      }      }
2957        # Return the result.
2958        return $retVal;
2959    }
2960    
2961    =head3 WriteMetaXML
2962    
2963    C<< ERDB::WriteMetaXML($structure, $fileName); >>
2964    
2965    Write the metadata XML to a file. This method is the reverse of L</ReadMetaXML>, and is
2966    used to update the database definition. It must be used with care, however, since it
2967    will only work on a raw structure, not on the processed structure created by an ERDB
2968    constructor.
2969    
2970    =over 4
2971    
2972    =item structure
2973    
2974    XML structure to be written to the file.
2975    
2976    =item fileName
2977    
2978    Name of the output file to which the updated XML should be stored.
2979    
2980    =back
2981    
2982    =cut
2983    
2984    sub WriteMetaXML {
2985        # Get the parameters.
2986        my ($structure, $fileName) = @_;
2987        # Compute the output.
2988        my $fileString = XML::Simple::XMLout($structure, %XmlOptions, %XmlOutOpts);
2989        # Write it to the file.
2990        my $xmlOut = Open(undef, ">$fileName");
2991        print $xmlOut $fileString;
2992    }
2993    
2994    
2995    =head3 HTMLNote
2996    
2997    Convert a note or comment to HTML by replacing some bulletin-board codes with HTML. The codes
2998    supported are C<[b]> for B<bold>, C<[i]> for I<italics>, and C<[p]> for a new paragraph.
2999    Except for C<[p]>, all the codes are closed by slash-codes. So, for
3000    example, C<[b]Feature[/b]> displays the string C<Feature> in boldface.
3001    
3002    C<< my $realHtml = ERDB::HTMLNote($dataString); >>
3003    
3004    =over 4
3005    
3006    =item dataString
3007    
3008    String to convert to HTML.
3009    
3010    =item RETURN
3011    
3012    An HTML string derived from the input string.
3013    
3014    =back
3015    
3016    =cut
3017    
3018    sub HTMLNote {
3019        # Get the parameter.
3020        my ($dataString) = @_;
3021        # HTML-escape the text.
3022        my $retVal = CGI::escapeHTML($dataString);
3023        # Substitute the bulletin board codes.
3024        $retVal =~ s!\[(/?[bi])\]!<$1>!g;
3025        $retVal =~ s!\[p\]!</p><p>!g;
3026        # Return the result.
3027        return $retVal;
3028    }
3029    
3030    
3031    =head2 Data Mining Methods
3032    
3033    =head3 GetUsefulCrossValues
3034    
3035    C<< my @attrNames = $sprout->GetUsefulCrossValues($sourceEntity, $relationship); >>
3036    
3037    Return a list of the useful attributes that would be returned by a B<Cross> call
3038    from an entity of the source entity type through the specified relationship. This
3039    means it will return the fields of the target entity type and the intersection data
3040    fields in the relationship. Only primary table fields are returned. In other words,
3041    the field names returned will be for fields where there is always one and only one
3042    value.
3043    
3044    =over 4
3045    
3046    =item sourceEntity
3047    
3048    Name of the entity from which the relationship crossing will start.
3049    
3050    =item relationship
3051    
3052    Name of the relationship being crossed.
3053    
3054    =item RETURN
3055    
3056    Returns a list of field names in Sprout field format (I<objectName>C<(>I<fieldName>C<)>.
3057    
3058    =back
3059    
3060    =cut
3061    #: Return Type @;
3062    sub GetUsefulCrossValues {
3063        # Get the parameters.
3064        my ($self, $sourceEntity, $relationship) = @_;
3065        # Declare the return variable.
3066        my @retVal = ();
3067        # Determine the target entity for the relationship. This is whichever entity is not
3068        # the source entity. So, if the source entity is the FROM, we'll get the name of
3069        # the TO, and vice versa.
3070        my $relStructure = $self->_GetStructure($relationship);
3071        my $targetEntityType = ($relStructure->{from} eq $sourceEntity ? "to" : "from");
3072        my $targetEntity = $relStructure->{$targetEntityType};
3073        # Get the field table for the entity.
3074        my $entityFields = $self->GetFieldTable($targetEntity);
3075        # The field table is a hash. The hash key is the field name. The hash value is a structure.
3076        # For the entity fields, the key aspect of the target structure is that the {relation} value
3077        # must match the entity name.
3078        my @fieldList = map { "$targetEntity($_)" } grep { $entityFields->{$_}->{relation} eq $targetEntity }
3079                            keys %{$entityFields};
3080        # Push the fields found onto the return variable.
3081        push @retVal, sort @fieldList;
3082        # Get the field table for the relationship.
3083        my $relationshipFields = $self->GetFieldTable($relationship);
3084        # Here we have a different rule. We want all the fields other than "from-link" and "to-link".
3085        # This may end up being an empty set.
3086        my @fieldList2 = map { "$relationship($_)" } grep { $_ ne "from-link" && $_ ne "to-link" }
3087                            keys %{$relationshipFields};
3088        # Push these onto the return list.
3089        push @retVal, sort @fieldList2;
3090        # Return the result.
3091        return @retVal;
3092    }
3093    
3094    =head3 FindColumn
3095    
3096    C<< my $colIndex = ERDB::FindColumn($headerLine, $columnIdentifier); >>
3097    
3098    Return the location a desired column in a data mining header line. The data
3099    mining header line is a tab-separated list of column names. The column
3100    identifier is either the numerical index of a column or the actual column
3101    name.
3102    
3103    =over 4
3104    
3105    =item headerLine
3106    
3107    The header line from a data mining command, which consists of a tab-separated
3108    list of column names.
3109    
3110    =item columnIdentifier
3111    
3112    Either the ordinal number of the desired column (1-based), or the name of the
3113    desired column.
3114    
3115    =item RETURN
3116    
3117    Returns the array index (0-based) of the desired column.
3118    
3119    =back
3120    
3121    =cut
3122    
3123    sub FindColumn {
3124        # Get the parameters.
3125        my ($headerLine, $columnIdentifier) = @_;
3126        # Declare the return variable.
3127        my $retVal;
3128        # Split the header line into column names.
3129        my @headers = ParseColumns($headerLine);
3130        # Determine whether we have a number or a name.
3131        if ($columnIdentifier =~ /^\d+$/) {
3132            # Here we have a number. Subtract 1 and validate the result.
3133            $retVal = $columnIdentifier - 1;
3134            if ($retVal < 0 || $retVal > $#headers) {
3135                Confess("Invalid column identifer \"$columnIdentifier\": value out of range.");
3136            }
3137        } else {
3138            # Here we have a name. We need to find it in the list.
3139            for (my $i = 0; $i <= $#headers && ! defined($retVal); $i++) {
3140                if ($headers[$i] eq $columnIdentifier) {
3141                    $retVal = $i;
3142                }
3143            }
3144            if (! defined($retVal)) {
3145                Confess("Invalid column identifier \"$columnIdentifier\": value not found.");
3146            }
3147        }
3148        # Return the result.
3149        return $retVal;
3150    }
3151    
3152    =head3 ParseColumns
3153    
3154    C<< my @columns = ERDB::ParseColumns($line); >>
3155    
3156    Convert the specified data line to a list of columns.
3157    
3158    =over 4
3159    
3160    =item line
3161    
3162    A data mining input, consisting of a tab-separated list of columns terminated by a
3163    new-line.
3164    
3165    =item RETURN
3166    
3167    Returns a list consisting of the column values.
3168    
3169    =back
3170    
3171    =cut
3172    
3173    sub ParseColumns {
3174        # Get the parameters.
3175        my ($line) = @_;
3176        # Chop off the line-end.
3177        chomp $line;
3178        # Split it into a list.
3179        my @retVal = split(/\t/, $line);
3180        # Return the result.
3181        return @retVal;
3182    }
3183    
3184    =head2 Virtual Methods
3185    
3186    =head3 CleanKeywords
3187    
3188    C<< my $cleanedString = $erdb->CleanKeywords($searchExpression); >>
3189    
3190    Clean up a search expression or keyword list. This is a virtual method that may
3191    be overridden by the subclass. The base-class method removes extra spaces
3192    and converts everything to lower case.
3193    
3194    =over 4
3195    
3196    =item searchExpression
3197    
3198    Search expression or keyword list to clean. Note that a search expression may
3199    contain boolean operators which need to be preserved. This includes leading
3200    minus signs.
3201    
3202    =item RETURN
3203    
3204    Cleaned expression or keyword list.
3205    
3206    =back
3207    
3208    =cut
3209    
3210    sub CleanKeywords {
3211        # Get the parameters.
3212        my ($self, $searchExpression) = @_;
3213        # Lower-case the expression and copy it into the return variable. Note that we insure we
3214        # don't accidentally end up with an undefined value.
3215        my $retVal = lc($searchExpression || "");
3216        # Remove extra spaces.
3217        $retVal =~ s/\s+/ /g;
3218        $retVal =~ s/(^\s+)|(\s+$)//g;
3219        # Return the result.
3220        return $retVal;
3221    }
3222    
3223    =head3 GetSourceObject
3224    
3225    C<< my $source = $erdb->GetSourceObject($entityName); >>
3226    
3227    Return the object to be used in loading special attributes of the specified entity. The
3228    algorithm for loading special attributes is stored in the C<DataGen> elements of the
3229    XML
3230    
3231    =head2 Internal Utility Methods
3232    
3233    =head3 _RelationMap
3234    
3235    C<< my @relationMap = _RelationMap($mappedNameHashRef, $mappedNameListRef); >>
3236    
3237    Create the relation map for an SQL query. The relation map is used by B<DBObject>
3238    to determine how to interpret the results of the query.
3239    
3240    =over 4
3241    
3242    =item mappedNameHashRef
3243    
3244    Reference to a hash that maps modified object names to real object names.
3245    
3246    =item mappedNameListRef
3247    
3248    Reference to a list of modified object names in the order they appear in the
3249    SELECT list.
3250    
3251    =item RETURN
3252    
3253    Returns a list of 2-tuples. Each tuple consists of an object name as used in the
3254    query followed by the actual name of that object. This enables the B<DBObject> to
3255    determine the order of the tables in the query and which object name belongs to each
3256    mapped object name. Most of the time these two values are the same; however, if a
3257    relation occurs twice in the query, the relation name in the field list and WHERE
3258    clause will use a mapped name (generally the actual relation name with a numeric
3259    suffix) that does not match the actual relation name.
3260    
3261    =back
3262    
3263    =cut
3264    
3265    sub _RelationMap {
3266        # Get the parameters.
3267        my ($mappedNameHashRef, $mappedNameListRef) = @_;
3268        # Declare the return variable.
3269        my @retVal = ();
3270        # Build the map.
3271        for my $mappedName (@{$mappedNameListRef}) {
3272            push @retVal, [$mappedName, $mappedNameHashRef->{$mappedName}];
3273        }
3274        # Return it.
3275        return @retVal;
3276    }
3277    
3278    
3279    =head3 _SetupSQL
3280    
3281    Process a list of object names and a filter clause so that they can be used to
3282    build an SQL statement. This method takes in a reference to a list of object names
3283    and a filter clause. It will return a corrected filter clause, a list of mapped
3284    names and the mapped name hash.
3285    
3286    This is an instance method.
3287    
3288    =over 4
3289    
3290    =item objectNames
3291    
3292    Reference to a list of the object names to be included in the query.
3293    
3294    =item filterClause
3295    
3296    A string containing the WHERE clause for the query (without the C<WHERE>) and also
3297    optionally the C<ORDER BY> and C<LIMIT> clauses.
3298    
3299    =item matchClause
3300    
3301    An optional full-text search clause. If specified, it will be inserted at the
3302    front of the WHERE clause. It should already be SQL-formatted; that is, the
3303    field names should be in the form I<table>C<.>I<fieldName>.
3304    
3305    =item RETURN
3306    
3307    Returns a three-element list. The first element is the SQL statement suffix, beginning
3308    with the FROM clause. The second element is a reference to a list of the names to be
3309    used in retrieving the fields. The third element is a hash mapping the names to the
3310    objects they represent.
3311    
3312    =back
3313    
3314    =cut
3315    
3316    sub _SetupSQL {
3317        my ($self, $objectNames, $filterClause, $matchClause) = @_;
3318        # Adjust the list of object names to account for multiple occurrences of the
3319        # same object. We start with a hash table keyed on object name that will
3320        # return the object suffix. The first time an object is encountered it will
3321        # not be found in the hash. The next time the hash will map the object name
3322        # to 2, then 3, and so forth.
3323        my %objectHash = ();
3324        # This list will contain the object names as they are to appear in the
3325        # FROM list.
3326        my @fromList = ();
3327        # This list contains the suffixed object name for each object. It is exactly
3328        # parallel to the list in the $objectNames parameter.
3329        my @mappedNameList = ();
3330        # Finally, this hash translates from a mapped name to its original object name.
3331        my %mappedNameHash = ();
3332        # Now we create the lists. Note that for every single name we push something into
3333        # @fromList and @mappedNameList. This insures that those two arrays are exactly
3334        # parallel to $objectNames.
3335        for my $objectName (@{$objectNames}) {
3336            # Get the next suffix for this object.
3337            my $suffix = $objectHash{$objectName};
3338            if (! $suffix) {
3339                # Here we are seeing the object for the first time. The object name
3340                # is used as is.
3341                push @mappedNameList, $objectName;
3342                push @fromList, $objectName;
3343                $mappedNameHash{$objectName} = $objectName;
3344                # Denote the next suffix will be 2.
3345                $objectHash{$objectName} = 2;
3346            } else {
3347                # Here we've seen the object before. We construct a new name using
3348                # the suffix from the hash and update the hash.
3349                my $mappedName = "$objectName$suffix";
3350                $objectHash{$objectName} = $suffix + 1;
3351                # The FROM list has the object name followed by the mapped name. This
3352                # tells SQL it's still the same table, but we're using a different name
3353                # for it to avoid confusion.
3354                push @fromList, "$objectName $mappedName";
3355                # The mapped-name list contains the real mapped name.
3356                push @mappedNameList, $mappedName;
3357                # Finally, enable us to get back from the mapped name to the object name.
3358                $mappedNameHash{$mappedName} = $objectName;
3359            }
3360        }
3361        # Begin the SELECT suffix. It starts with
3362        #
3363        # FROM name1, name2, ... nameN
3364        #
3365        my $suffix = "FROM " . join(', ', @fromList);
3366        # Now for the WHERE. First, we need a place for the filter string.
3367        my $filterString = "";
3368        # We will also keep a list of conditions to add to the WHERE clause in order to link
3369        # entities and relationships as well as primary relations to secondary ones.
3370        my @joinWhere = ();
3371        # Check for a filter clause.
3372        if ($filterClause) {
3373            # Here we have one, so we convert its field names and add it to the query. First,
3374            # We create a copy of the filter string we can work with.
3375            $filterString = $filterClause;
3376            # Next, we sort the object names by length. This helps protect us from finding
3377            # object names inside other object names when we're doing our search and replace.
3378            my @sortedNames = sort { length($b) - length($a) } @mappedNameList;
3379            # The final preparatory step is to create a hash table of relation names. The
3380            # table begins with the relation names already in the SELECT command. We may
3381            # need to add relations later if there is filtering on a field in a secondary
3382            # relation. The secondary relations are the ones that contain multiply-
3383            # occurring or optional fields.
3384            my %fromNames = map { $_ => 1 } @sortedNames;
3385            # We are ready to begin. We loop through the object names, replacing each
3386            # object name's field references by the corresponding SQL field reference.
3387            # Along the way, if we find a secondary relation, we will need to add it
3388            # to the FROM clause.
3389            for my $mappedName (@sortedNames) {
3390                # Get the length of the object name plus 2. This is the value we add to the
3391                # size of the field name to determine the size of the field reference as a
3392                # whole.
3393                my $nameLength = 2 + length $mappedName;
3394                # Get the real object name for this mapped name.
3395                my $objectName = $mappedNameHash{$mappedName};
3396                Trace("Processing $mappedName for object $objectName.") if T(4);
3397                # Get the object's field list.
3398                my $fieldList = $self->GetFieldTable($objectName);
3399                # Find the field references for this object.
3400                while ($filterString =~ m/$mappedName\(([^)]*)\)/g) {
3401                    # At this point, $1 contains the field name, and the current position
3402                    # is set immediately after the final parenthesis. We pull out the name of
3403                    # the field and the position and length of the field reference as a whole.
3404                    my $fieldName = $1;
3405                    my $len = $nameLength + length $fieldName;
3406                    my $pos = pos($filterString) - $len;
3407                    # Insure the field exists.
3408                    if (!exists $fieldList->{$fieldName}) {
3409                        Confess("Field $fieldName not found for object $objectName.");
3410                    } else {
3411                        Trace("Processing $fieldName at position $pos.") if T(4);
3412                        # Get the field's relation.
3413                        my $relationName = $fieldList->{$fieldName}->{relation};
3414                        # Now we have a secondary relation. We need to insure it matches the
3415                        # mapped name of the primary relation. First we peel off the suffix
3416                        # from the mapped name.
3417                        my $mappingSuffix = substr $mappedName, length($objectName);
3418                        # Put the mapping suffix onto the relation name to get the
3419                        # mapped relation name.
3420                        my $mappedRelationName = "$relationName$mappingSuffix";
3421                        # Insure the relation is in the FROM clause.
3422                        if (!exists $fromNames{$mappedRelationName}) {
3423                            # Add the relation to the FROM clause.
3424                            if ($mappedRelationName eq $relationName) {
3425                                # The name is un-mapped, so we add it without
3426                                # any frills.
3427                                $suffix .= ", $relationName";
3428                                push @joinWhere, "$objectName.id = $relationName.id";
3429                            } else {
3430                                # Here we have a mapping situation.
3431                                $suffix .= ", $relationName $mappedRelationName";
3432                                push @joinWhere, "$mappedRelationName.id = $mappedName.id";
3433                            }
3434                            # Denote we have this relation available for future fields.
3435                            $fromNames{$mappedRelationName} = 1;
3436                        }
3437                        # Form an SQL field reference from the relation name and the field name.
3438                        my $sqlReference = "$mappedRelationName." . _FixName($fieldName);
3439                        # Put it into the filter string in place of the old value.
3440                        substr($filterString, $pos, $len) = $sqlReference;
3441                        # Reposition the search.
3442                        pos $filterString = $pos + length $sqlReference;
3443                    }
3444                }
3445            }
3446        }
3447        # The next step is to join the objects together. We only need to do this if there
3448        # is more than one object in the object list. We start with the first object and
3449        # run through the objects after it. Note also that we make a safety copy of the
3450        # list before running through it, because we shift off the first object before
3451        # processing the rest.
3452        my @mappedObjectList = @mappedNameList;
3453        my $lastMappedObject = shift @mappedObjectList;
3454        # Get the join table.
3455        my $joinTable = $self->{_metaData}->{Joins};
3456        # Loop through the object list.
3457        for my $thisMappedObject (@mappedObjectList) {
3458            # Look for a join using the real object names.
3459            my $lastObject = $mappedNameHash{$lastMappedObject};
3460            my $thisObject = $mappedNameHash{$thisMappedObject};
3461            my $joinKey = "$lastObject/$thisObject";
3462            if (!exists $joinTable->{$joinKey}) {
3463                # Here there's no join, so we throw an error.
3464                Confess("No join exists to connect from $lastMappedObject to $thisMappedObject.");
3465            } else {
3466                # Get the join clause.
3467                my $unMappedJoin = $joinTable->{$joinKey};
3468                # Fix the names.
3469                $unMappedJoin =~ s/$lastObject/$lastMappedObject/;
3470                $unMappedJoin =~ s/$thisObject/$thisMappedObject/;
3471                push @joinWhere, $unMappedJoin;
3472                # Save this object as the last object for the next iteration.
3473                $lastMappedObject = $thisMappedObject;
3474            }
3475        }
3476        # Now we need to handle the whole ORDER BY / LIMIT thing. The important part
3477        # here is we want the filter clause to be empty if there's no WHERE filter.
3478        # We'll put the ORDER BY / LIMIT clauses in the following variable.
3479        my $orderClause = "";
3480        # This is only necessary if we have a filter string in which the ORDER BY
3481        # and LIMIT clauses can live.
3482        if ($filterString) {
3483            # Locate the ORDER BY or LIMIT verbs (if any). We use a non-greedy
3484            # operator so that we find the first occurrence of either verb.
3485            if ($filterString =~ m/^(.*?)\s*(ORDER BY|LIMIT)/g) {
3486                # Here we have an ORDER BY or LIMIT verb. Split it off of the filter string.
3487                my $pos = pos $filterString;
3488                $orderClause = $2 . substr($filterString, $pos);
3489                $filterString = $1;
3490            }
3491        }
3492        # All the things that are supposed to be in the WHERE clause of the
3493        # SELECT command need to be put into @joinWhere so we can string them
3494        # together. We begin with the match clause. This is important,
3495        # because the match clause's parameter mark must precede any parameter
3496        # marks in the filter string.
3497        if ($matchClause) {
3498            push @joinWhere, $matchClause;
3499        }
3500        # Add the filter string. We put it in parentheses to avoid operator
3501        # precedence problems with the match clause or the joins.
3502        if ($filterString) {
3503            Trace("Filter string is \"$filterString\".") if T(4);
3504            push @joinWhere, "($filterString)";
3505        }
3506        # String it all together into a big filter clause.
3507        if (@joinWhere) {
3508            $suffix .= " WHERE " . join(' AND ', @joinWhere);
3509        }
3510        # Add the sort or limit clause (if any).
3511        if ($orderClause) {
3512            $suffix .= " $orderClause";
3513        }
3514        # Return the suffix, the mapped name list, and the mapped name hash.
3515        return ($suffix, \@mappedNameList, \%mappedNameHash);
3516    }
3517    
3518    =head3 _GetStatementHandle
3519    
3520    This method will prepare and execute an SQL query, returning the statement handle.
3521    The main reason for doing this here is so that everybody who does SQL queries gets
3522    the benefit of tracing.
3523    
3524    This is an instance method.
3525    
3526    =over 4
3527    
3528    =item command
3529    
3530    Command to prepare and execute.
3531    
3532    =item params
3533    
3534    Reference to a list of the values to be substituted in for the parameter marks.
3535    
3536    =item RETURN
3537    
3538    Returns a prepared and executed statement handle from which the caller can extract
3539    results.
3540    
3541    =back
3542    
3543    =cut
3544    
3545    sub _GetStatementHandle {
3546        # Get the parameters.
3547        my ($self, $command, $params) = @_;
3548        # Trace the query.
3549        Trace("SQL query: $command") if T(SQL => 3);
3550        Trace("PARMS: '" . (join "', '", @{$params}) . "'") if (T(SQL => 4) && (@{$params} > 0));
3551        # Get the database handle.
3552        my $dbh = $self->{_dbh};
3553        # Prepare the command.
3554        my $sth = $dbh->prepare_command($command);
3555        # Execute it with the parameters bound in.
3556        $sth->execute(@{$params}) || Confess("SELECT error:  " . $sth->errstr());
3557        # Return the statement handle.
3558        return $sth;
3559    }
3560    
3561    =head3 _GetLoadStats
3562    
3563    Return a blank statistics object for use by the load methods.
3564    
3565    This is a static method.
3566    
3567    =cut
3568    
3569    sub _GetLoadStats{
3570        return Stats->new();
3571  }  }
3572    
3573  =head3 DumpRelation  =head3 _DumpRelation
3574    
3575  Dump the specified relation's to the specified output file in tab-delimited format.  Dump the specified relation to the specified output file in tab-delimited format.
3576    
3577  This is an instance method.  This is an instance method.
3578    
# Line 1750  Line 3620 
3620      close DTXOUT;      close DTXOUT;
3621  }  }
3622    
3623  =head3 GetStructure  =head3 _GetStructure
3624    
3625  Get the data structure for a specified entity or relationship.  Get the data structure for a specified entity or relationship.
3626    
# Line 1789  Line 3659 
3659      return $retVal;      return $retVal;
3660  }  }
3661    
3662  =head3 GetRelationTable  
3663    
3664    =head3 _GetRelationTable
3665    
3666  Get the list of relations for a specified entity or relationship.  Get the list of relations for a specified entity or relationship.
3667    
# Line 1818  Line 3690 
3690      return $objectData->{Relations};      return $objectData->{Relations};
3691  }  }
3692    
3693  =head3 GetFieldTable  =head3 _ValidateFieldNames
   
 Get the field structure for a specified entity or relationship.  
   
 This is an instance method.  
   
 =over 4  
   
 =item objectName  
   
 Name of the desired entity or relationship.  
   
 =item RETURN  
   
 The table containing the field descriptors for the specified object.  
   
 =back  
   
 =cut  
   
 sub _GetFieldTable {  
     # Get the parameters.  
     my ($self, $objectName) = @_;  
     # Get the descriptor from the metadata.  
     my $objectData = $self->_GetStructure($objectName);  
     # Return the object's field table.  
     return $objectData->{Fields};  
 }  
   
 =head3 ValidateFieldNames  
3694    
3695  Determine whether or not the field names are valid. A description of the problems with the names  Determine whether or not the field names are valid. A description of the problems with the names
3696  will be written to the standard error output. If there is an error, this method will abort. This is  will be written to the standard error output. If there is an error, this method will abort. This is
# Line 1874  Line 3717 
3717          for my $object (values %{$metadata->{$section}}) {          for my $object (values %{$metadata->{$section}}) {
3718              # Loop through the object's fields.              # Loop through the object's fields.
3719              for my $fieldName (keys %{$object->{Fields}}) {              for my $fieldName (keys %{$object->{Fields}}) {
3720                  # Now we make some initial validations.                  # If this field name is invalid, set the return value to zero
3721                  if ($fieldName =~ /--/) {                  # so we know we encountered an error.
3722                      # Here we have a doubled minus sign.                  if (! ValidateFieldName($fieldName)) {
                     print STDERR "Field name $fieldName has a doubled hyphen.\n";  
                     $retVal = 0;  
                 } elsif ($fieldName !~ /^[A-Za-z]/) {  
                     # Here the field name is missing the initial letter.  
                     print STDERR "Field name $fieldName does not begin with a letter.\n";  
                     $retVal = 0;  
                 } else {  
                     # Strip out the minus signs. Everything remaining must be a letter  
                     # or digit.  
                     my $strippedName = $fieldName;  
                     $strippedName =~ s/-//g;  
                     if ($strippedName !~ /^[A-Za-z0-9]+$/) {  
                         print STDERR "Field name $fieldName contains illegal characters.\n";  
3723                          $retVal = 0;                          $retVal = 0;
3724                      }                      }
3725                  }                  }
3726              }              }
3727          }          }
     }  
3728      # If an error was found, fail.      # If an error was found, fail.
3729      if ($retVal  == 0) {      if ($retVal  == 0) {
3730          Confess("Errors found in field names.");          Confess("Errors found in field names.");
3731      }      }
3732  }  }
3733    
3734  =head3 LoadRelation  =head3 _LoadRelation
3735    
3736  Load a relation from the data in a tab-delimited disk file. The load will only take place if a disk  Load a relation from the data in a tab-delimited disk file. The load will only take place if a disk
3737  file with the same name as the relation exists in the specified directory.  file with the same name as the relation exists in the specified directory.
# Line 1962  Line 3791 
3791      return $retVal;      return $retVal;
3792  }  }
3793    
3794  =head3 LoadMetaData  
3795    =head3 _LoadMetaData
3796    
3797  This method loads the data describing this database from an XML file into a metadata structure.  This method loads the data describing this database from an XML file into a metadata structure.
3798  The resulting structure is a set of nested hash tables containing all the information needed to  The resulting structure is a set of nested hash tables containing all the information needed to
# Line 1987  Line 3817 
3817  sub _LoadMetaData {  sub _LoadMetaData {
3818      # Get the parameters.      # Get the parameters.
3819      my ($filename) = @_;      my ($filename) = @_;
3820        Trace("Reading DBD from $filename.") if T(2);
3821      # Slurp the XML file into a variable. Extensive use of options is used to insure we      # Slurp the XML file into a variable. Extensive use of options is used to insure we
3822      # get the exact structure we want.      # get the exact structure we want.
3823      my $metadata = XML::Simple::XMLin($filename,      my $metadata = ReadMetaXML($filename);
                                       GroupTags => { Relationships => 'Relationship',  
                                                      Entities => 'Entity',  
                                                      Fields => 'Field',  
                                                      Indexes => 'Index',  
                                                      IndexFields => 'IndexField'},  
                                       KeyAttr => { Relationship => 'name',  
                                                    Entity => 'name',  
                                                    Field => 'name'},  
                                       ForceArray => ['Field', 'Index', 'IndexField'],  
                                       ForceContent => 1,  
                                       NormalizeSpace => 2  
                                       );  
     Trace("XML metadata loaded from file $filename.") if T(1);  
3824      # Before we go any farther, we need to validate the field and object names. If an error is found,      # Before we go any farther, we need to validate the field and object names. If an error is found,
3825      # the method below will fail.      # the method below will fail.
3826      _ValidateFieldNames($metadata);      _ValidateFieldNames($metadata);
# Line 2014  Line 3832 
3832      for my $entityName (keys %{$entityList}) {      for my $entityName (keys %{$entityList}) {
3833          my $entityStructure = $entityList->{$entityName};          my $entityStructure = $entityList->{$entityName};
3834          #          #
3835          # The first step is to run creating all the entity's default values. For C<Field> elements,          # The first step is to create all the entity's default values. For C<Field> elements,
3836          # the relation name must be added where it is not specified. For relationships,          # the relation name must be added where it is not specified. For relationships,
3837          # the B<from-link> and B<to-link> fields must be inserted, and for entities an B<id>          # the B<from-link> and B<to-link> fields must be inserted, and for entities an B<id>
3838          # field must be added to each relation. Finally, each field will have a C<PrettySort> attribute          # field must be added to each relation. Finally, each field will have a C<PrettySort> attribute
# Line 2132  Line 3950 
3950              my $count = 0;              my $count = 0;
3951              for my $index (@{$indexList}) {              for my $index (@{$indexList}) {
3952                  # Add this index to the index table.                  # Add this index to the index table.
3953                  _AddIndex("idx$relationName$count", $relation, $index);                  _AddIndex("idx$count", $relation, $index);
3954                  # Increment the counter so that the next index has a different name.                  # Increment the counter so that the next index has a different name.
3955                  $count++;                  $count++;
3956              }              }
# Line 2193  Line 4011 
4011          my @fromList = ();          my @fromList = ();
4012          my @toList = ();          my @toList = ();
4013          my @bothList = ();          my @bothList = ();
4014          Trace("Join table build for $entityName.") if T(3);          Trace("Join table build for $entityName.") if T(metadata => 4);
4015          for my $relationshipName (keys %{$relationshipList}) {          for my $relationshipName (keys %{$relationshipList}) {
4016              my $relationship = $relationshipList->{$relationshipName};              my $relationship = $relationshipList->{$relationshipName};
4017              # Determine if this relationship has our entity in one of its link fields.              # Determine if this relationship has our entity in one of its link fields.
4018              my $fromEntity = $relationship->{from};              my $fromEntity = $relationship->{from};
4019              my $toEntity = $relationship->{to};              my $toEntity = $relationship->{to};
4020              Trace("Join check for relationship $relationshipName from $fromEntity to $toEntity.") if T(3);              Trace("Join check for relationship $relationshipName from $fromEntity to $toEntity.") if T(Joins => 4);
4021              if ($fromEntity eq $entityName) {              if ($fromEntity eq $entityName) {
4022                  if ($toEntity eq $entityName) {                  if ($toEntity eq $entityName) {
4023                      # Here the relationship is recursive.                      # Here the relationship is recursive.
4024                      push @bothList, $relationshipName;                      push @bothList, $relationshipName;
4025                      Trace("Relationship $relationshipName put in both-list.") if T(3);                      Trace("Relationship $relationshipName put in both-list.") if T(metadata => 4);
4026                  } else {                  } else {
4027                      # Here the relationship comes from the entity.                      # Here the relationship comes from the entity.
4028                      push @fromList, $relationshipName;                      push @fromList, $relationshipName;
4029                      Trace("Relationship $relationshipName put in from-list.") if T(3);                      Trace("Relationship $relationshipName put in from-list.") if T(metadata => 4);
4030                  }                  }
4031              } elsif ($toEntity eq $entityName) {              } elsif ($toEntity eq $entityName) {
4032                  # Here the relationship goes to the entity.                  # Here the relationship goes to the entity.
4033                  push @toList, $relationshipName;                  push @toList, $relationshipName;
4034                  Trace("Relationship $relationshipName put in to-list.") if T(3);                  Trace("Relationship $relationshipName put in to-list.") if T(metadata => 4);
4035              }              }
4036          }          }
4037          # Create the nonrecursive joins. Note that we build two hashes for running          # Create the nonrecursive joins. Note that we build two hashes for running
# Line 2229  Line 4047 
4047                  # Create joins between the entity and this relationship.                  # Create joins between the entity and this relationship.
4048                  my $linkField = "$relationshipName.${linkType}_link";                  my $linkField = "$relationshipName.${linkType}_link";
4049                  my $joinClause = "$entityName.id = $linkField";                  my $joinClause = "$entityName.id = $linkField";
4050                  Trace("Entity join clause is $joinClause for $entityName and $relationshipName.") if T(4);                  Trace("Entity join clause is $joinClause for $entityName and $relationshipName.") if T(metadata => 4);
4051                  $joinTable{"$entityName/$relationshipName"} = $joinClause;                  $joinTable{"$entityName/$relationshipName"} = $joinClause;
4052                  $joinTable{"$relationshipName/$entityName"} = $joinClause;                  $joinTable{"$relationshipName/$entityName"} = $joinClause;
4053                  # Create joins between this relationship and the other relationships.                  # Create joins between this relationship and the other relationships.
# Line 2250  Line 4068 
4068                              # relationship and itself are prohibited.                              # relationship and itself are prohibited.
4069                              my $relJoinClause = "$otherName.${otherType}_link = $linkField";                              my $relJoinClause = "$otherName.${otherType}_link = $linkField";
4070                              $joinTable{$joinKey} = $relJoinClause;                              $joinTable{$joinKey} = $relJoinClause;
4071                              Trace("Relationship join clause is $relJoinClause for $joinKey.") if T(4);                              Trace("Relationship join clause is $relJoinClause for $joinKey.") if T(metadata => 4);
4072                          }                          }
4073                      }                      }
4074                  }                  }
# Line 2259  Line 4077 
4077                  # relationship can only be ambiguous with another recursive relationship,                  # relationship can only be ambiguous with another recursive relationship,
4078                  # and the incoming relationship from the outer loop is never recursive.                  # and the incoming relationship from the outer loop is never recursive.
4079                  for my $otherName (@bothList) {                  for my $otherName (@bothList) {
4080                      Trace("Setting up relationship joins to recursive relationship $otherName with $relationshipName.") if T(3);                      Trace("Setting up relationship joins to recursive relationship $otherName with $relationshipName.") if T(metadata => 4);
4081                      # Join from the left.                      # Join from the left.
4082                      $joinTable{"$relationshipName/$otherName"} =                      $joinTable{"$relationshipName/$otherName"} =
4083                          "$linkField = $otherName.from_link";                          "$linkField = $otherName.from_link";
# Line 2274  Line 4092 
4092          # rise to situations where we can't create the path we want; however, it is always          # rise to situations where we can't create the path we want; however, it is always
4093          # possible to get the same effect using multiple queries.          # possible to get the same effect using multiple queries.
4094          for my $relationshipName (@bothList) {          for my $relationshipName (@bothList) {
4095              Trace("Setting up entity joins to recursive relationship $relationshipName with $entityName.") if T(3);              Trace("Setting up entity joins to recursive relationship $relationshipName with $entityName.") if T(metadata => 4);
4096              # Join to the entity from each direction.              # Join to the entity from each direction.
4097              $joinTable{"$entityName/$relationshipName"} =              $joinTable{"$entityName/$relationshipName"} =
4098                  "$entityName.id = $relationshipName.from_link";                  "$entityName.id = $relationshipName.from_link";
# Line 2288  Line 4106 
4106      return $metadata;      return $metadata;
4107  }  }
4108    
4109  =head3 CreateRelationshipIndex  =head3 _CreateRelationshipIndex
4110    
4111  Create an index for a relationship's relation.  Create an index for a relationship's relation.
4112    
# Line 2325  Line 4143 
4143      # index descriptor does not exist, it will be created automatically so we can add      # index descriptor does not exist, it will be created automatically so we can add
4144      # the field to it.      # the field to it.
4145      unshift @{$newIndex->{IndexFields}}, $firstField;      unshift @{$newIndex->{IndexFields}}, $firstField;
4146        # If this is a one-to-many relationship, the "To" index is unique.
4147        if ($relationshipStructure->{arity} eq "1M" && $indexKey eq "To") {
4148            $newIndex->{Unique} = 'true';
4149        }
4150      # Add the index to the relation.      # Add the index to the relation.
4151      _AddIndex("idx$relationshipName$indexKey", $relationStructure, $newIndex);      _AddIndex("idx$indexKey", $relationStructure, $newIndex);
4152  }  }
4153    
4154  =head3 AddIndex  =head3 _AddIndex
4155    
4156  Add an index to a relation structure.  Add an index to a relation structure.
4157    
# Line 2375  Line 4197 
4197      $relationStructure->{Indexes}->{$indexName} = $newIndex;      $relationStructure->{Indexes}->{$indexName} = $newIndex;
4198  }  }
4199    
4200  =head3 FixupFields  =head3 _FixupFields
4201    
4202  This method fixes the field list for an entity or relationship. It will add the caller-specified  This method fixes the field list for an entity or relationship. It will add the caller-specified
4203  relation name to fields that do not have a name and set the C<PrettySort> value as specified.  relation name to fields that do not have a name and set the C<PrettySort> value as specified.
# Line 2413  Line 4235 
4235          # Here it doesn't, so we create a new one.          # Here it doesn't, so we create a new one.
4236          $structure->{Fields} = { };          $structure->{Fields} = { };
4237      } else {      } else {
4238          # Here we have a field list. Loop through its fields.          # Here we have a field list. We need to track the searchable fields, so we
4239            # create a list for stashing them.
4240            my @textFields = ();
4241            # Loop through the fields.
4242          my $fieldStructures = $structure->{Fields};          my $fieldStructures = $structure->{Fields};
4243          for my $fieldName (keys %{$fieldStructures}) {          for my $fieldName (keys %{$fieldStructures}) {
4244              Trace("Processing field $fieldName of $defaultRelationName.") if T(4);              Trace("Processing field $fieldName of $defaultRelationName.") if T(4);
# Line 2422  Line 4247 
4247              my $type = $fieldData->{type};              my $type = $fieldData->{type};
4248              # Plug in a relation name if it is needed.              # Plug in a relation name if it is needed.
4249              Tracer::MergeOptions($fieldData, { relation => $defaultRelationName });              Tracer::MergeOptions($fieldData, { relation => $defaultRelationName });
4250              # Plug in a data generator if we need one.              # Check for searchability.
4251              if (!exists $fieldData->{DataGen}) {              if ($fieldData->{searchable}) {
4252                  # The data generator will use the default for the field's type.                  # Only allow this for a primary relation.
4253                  $fieldData->{DataGen} = { content => $TypeTable{$type}->{dataGen} };                  if ($fieldData->{relation} ne $defaultRelationName) {
4254                        Confess("Field $fieldName of $defaultRelationName is in secondary relations and cannot be searchable.");
4255                    } else {
4256                        push @textFields, $fieldName;
4257                    }
4258              }              }
             # Plug in the defaults for the optional data generation parameters.  
             Tracer::MergeOptions($fieldData->{DataGen}, { testCount => 1, pass => 0 });  
4259              # Add the PrettySortValue.              # Add the PrettySortValue.
4260              $fieldData->{PrettySort} = (($type eq "text") ? $textPrettySortValue : $prettySortValue);              $fieldData->{PrettySort} = (($type eq "text") ? $textPrettySortValue : $prettySortValue);
4261          }          }
4262            # If there are searchable fields, remember the fact.
4263            if (@textFields) {
4264                $structure->{searchFields} = \@textFields;
4265            }
4266      }      }
4267  }  }
4268    
4269  =head3 FixName  =head3 _FixName
4270    
4271  Fix the incoming field name so that it is a legal SQL column name.  Fix the incoming field name so that it is a legal SQL column name.
4272    
# Line 2464  Line 4295 
4295      return $fieldName;      return $fieldName;
4296  }  }
4297    
4298  =head3 FixNames  =head3 _FixNames
4299    
4300  Fix all the field names in a list.  Fix all the field names in a list.
4301    
# Line 2495  Line 4326 
4326      return @result;      return @result;
4327  }  }
4328    
4329  =head3 AddField  =head3 _AddField
4330    
4331  Add a field to a field list.  Add a field to a field list.
4332    
# Line 2530  Line 4361 
4361      $fieldList->{$fieldName} = $fieldStructure;      $fieldList->{$fieldName} = $fieldStructure;
4362  }  }
4363    
4364  =head3 ReOrderRelationTable  =head3 _ReOrderRelationTable
4365    
4366  This method will take a relation table and re-sort it according to the implicit ordering of the  This method will take a relation table and re-sort it according to the implicit ordering of the
4367  C<PrettySort> property. Instead of a hash based on field names, it will return a list of fields.  C<PrettySort> property. Instead of a hash based on field names, it will return a list of fields.
# Line 2591  Line 4422 
4422    
4423  }  }
4424    
4425  =head3 IsPrimary  =head3 _IsPrimary
4426    
4427  Return TRUE if a specified relation is a primary relation, else FALSE. A relation is primary  Return TRUE if a specified relation is a primary relation, else FALSE. A relation is primary
4428  if it has the same name as an entity or relationship.  if it has the same name as an entity or relationship.
# Line 2627  Line 4458 
4458      return $retVal;      return $retVal;
4459  }  }
4460    
4461  =head3 FindRelation  =head3 _FindRelation
4462    
4463  Return the descriptor for the specified relation.  Return the descriptor for the specified relation.
4464    
# Line 2658  Line 4489 
4489    
4490  =head2 HTML Documentation Utility Methods  =head2 HTML Documentation Utility Methods
4491    
4492  =head3 ComputeRelationshipSentence  =head3 _ComputeRelationshipSentence
4493    
4494  The relationship sentence consists of the relationship name between the names of the  The relationship sentence consists of the relationship name between the names of the
4495  two related entities and an arity indicator.  two related entities and an arity indicator.
# Line 2696  Line 4527 
4527      return $result;      return $result;
4528  }  }
4529    
4530  =head3 ComputeRelationshipHeading  =head3 _ComputeRelationshipHeading
4531    
4532  The relationship heading is the L<relationship sentence|/ComputeRelationshipSentence> with the entity  The relationship heading is the L<relationship sentence|/ComputeRelationshipSentence> with the entity
4533  names hyperlinked to the appropriate entity sections of the document.  names hyperlinked to the appropriate entity sections of the document.
# Line 2733  Line 4564 
4564      return $result;      return $result;
4565  }  }
4566    
4567  =head3 ShowRelationTable  =head3 _ShowRelationTable
4568    
4569  Generate the HTML string for a particular relation. The relation's data will be formatted as an HTML  Generate the HTML string for a particular relation. The relation's data will be formatted as an HTML
4570  table with three columns-- the field name, the field type, and the field description.  table with three columns-- the field name, the field type, and the field description.
# Line 2783  Line 4614 
4614          $htmlString .= "<li><b>Index $fullName</b>\n<ul>\n";          $htmlString .= "<li><b>Index $fullName</b>\n<ul>\n";
4615          # Add any note text.          # Add any note text.
4616          if (my $note = $indexData->{Notes}) {          if (my $note = $indexData->{Notes}) {
4617              $htmlString .= "<li>" . _HTMLNote($note->{content}) . "</li>\n";              $htmlString .= "<li>" . HTMLNote($note->{content}) . "</li>\n";
4618          }          }
4619          # Add the fiield list.          # Add the fiield list.
4620          $htmlString .= "<li><i>" . join(', ', @{$indexData->{IndexFields}}) . "</i></li>\n";          $htmlString .= "<li><i>" . join(', ', @{$indexData->{IndexFields}}) . "</i></li>\n";
# Line 2794  Line 4625 
4625      $htmlString .= "</ul>\n";      $htmlString .= "</ul>\n";
4626  }  }
4627    
4628  =head3 OpenFieldTable  =head3 _OpenFieldTable
4629    
4630  This method creates the header string for the field table generated by L</ShowMetaData>.  This method creates the header string for the field table generated by L</ShowMetaData>.
4631    
# Line 2819  Line 4650 
4650      return _OpenTable($tablename, 'Field', 'Type', 'Description');      return _OpenTable($tablename, 'Field', 'Type', 'Description');
4651  }  }
4652    
4653  =head3 OpenTable  =head3 _OpenTable
4654    
4655  This method creates the header string for an HTML table.  This method creates the header string for an HTML table.
4656    
# Line 2859  Line 4690 
4690      return $htmlString;      return $htmlString;
4691  }  }
4692    
4693  =head3 CloseTable  =head3 _CloseTable
4694    
4695  This method returns the HTML for closing a table.  This method returns the HTML for closing a table.
4696    
# Line 2871  Line 4702 
4702      return "</table></p>\n";      return "</table></p>\n";
4703  }  }
4704    
4705  =head3 ShowField  =head3 _ShowField
4706    
4707  This method returns the HTML for displaying a row of field information in a field table.  This method returns the HTML for displaying a row of field information in a field table.
4708    
# Line 2898  Line 4729 
4729      my $htmlString = "<tr><th align=\"left\">$fieldData->{name}</th><td>$fieldData->{type}</td>";      my $htmlString = "<tr><th align=\"left\">$fieldData->{name}</th><td>$fieldData->{type}</td>";
4730      # If we have content, add it as a third column.      # If we have content, add it as a third column.
4731      if (exists $fieldData->{Notes}) {      if (exists $fieldData->{Notes}) {
4732          $htmlString .= "<td>" . _HTMLNote($fieldData->{Notes}->{content}) . "</td>";          $htmlString .= "<td>" . HTMLNote($fieldData->{Notes}->{content}) . "</td>";
4733      }      }
4734      # Close off the row.      # Close off the row.
4735      $htmlString .= "</tr>\n";      $htmlString .= "</tr>\n";
# Line 2906  Line 4737 
4737      return $htmlString;      return $htmlString;
4738  }  }
4739    
 =head3 HTMLNote  
   
 Convert a note or comment to HTML by replacing some bulletin-board codes with HTML. The codes  
 supported are C<[b]> for B<bold>, C<[i]> for I<italics>, and C<[p]> for a new paragraph.  
 Except for C<[p]>, all the codes are closed by slash-codes. So, for  
 example, C<[b]Feature[/b]> displays the string C<Feature> in boldface.  
   
 This is a static method.  
   
 =over 4  
   
 =item dataString  
   
 String to convert to HTML.  
   
 =item RETURN  
   
 An HTML string derived from the input string.  
   
 =back  
   
 =cut  
   
 sub _HTMLNote {  
     # Get the parameter.  
     my ($dataString) = @_;  
     # Substitute the codes.  
     $dataString =~ s!\[(/?[bi])\]!<$1>!g;  
     $dataString =~ s!\[p\]!</p><p>!g;  
     # Return the result.  
     return $dataString;  
 }  
   
 =head2 Data Generation Utilities  
   
 =head3 IntGen  
   
 C<< my $integer = IntGen($min, $max); >>  
   
 Returns a random number between the specified minimum and maximum (inclusive).  
   
 =over 4  
   
 =item min  
   
 Minimum permissible return value.  
   
 =item max  
   
 Maximum permissible return value.  
   
 =item RETURN  
   
 Returns a value no lower than the minimum and no greater than the maximum.  
   
 =back  
   
 =cut  
   
 sub IntGen {  
     # Get the parameters.  
     my ($min, $max) = @_;  
     # Determine the range of possible values. Note we put some space well above the  
     # maximum value to give it a fighting chance of apppearing in the list.  
     my $span = $max + 0.99 - $min;  
     # Create an integer in the range.  
     my $retVal = $min + int(rand($span));  
     # Return the result.  
     return $retVal;  
 }  
   
 =head3 RandChar  
   
 C<< my $char = RandChar($sourceString); >>  
   
 Select a random character from a string.  
   
 =over 4  
   
 =item sourceString  
   
 String from which the random character should be selected.  
   
 =item RETURN  
   
 Returns a single character from the incoming string.  
   
 =back  
   
 =cut  
   
 sub RandChar {  
     # Get the parameter.  
     my ($sourceString) = @_;  
     # Select a random character.  
     my $retVal = IntGen(0, (length $sourceString) - 1);  
     # Return it.  
     return substr($sourceString, $retVal, 1);  
 }  
   
 =head3 RandChars  
   
 C<< my $string = RandChars($sourceString, $length); >>  
   
 Create a string from characters taken from a source string.  
   
 =over 4  
   
 =item sourceString  
   
 String from which the random characters should be selected.  
   
 =item length  
   
 Number of characters to put in the output string.  
   
 =item RETURN  
   
 Returns a string of the specified length consisting of characters taken from the  
 source string.  
   
 =back  
   
 =cut  
   
 sub RandChars {  
     # Get the parameters.  
     my ($sourceString, $length) = @_;  
     # Call RandChar repeatedly to generate the string.  
     my $retVal = "";  
     for (my $i = 0; $i < $length; $i++) {  
         $retVal .= RandChar($sourceString);  
     }  
     # Return the result.  
     return $retVal;  
 }  
   
 =head3 RandParam  
   
 C<< my $value = RandParam($parm1, $parm2, ... $parmN); >>  
   
 Return a randomly-selected value from the parameter list.  
   
 =over 4  
   
 =item parm1, parm2, ... parmN  
   
 List of values of which one will be selected.  
   
 =item RETURN  
   
 Returns a randomly-chosen value from the specified list.  
   
 =back  
   
 =cut  
   
 sub RandParam {  
     # Get the parameter.  
     my @parms = @_;  
     # Choose a random parameter from the list.  
     my $chosenIndex = IntGen(0, $#parms);  
     return $parms[$chosenIndex];  
 }  
   
 =head3 StringGen  
   
 C<< my $string = StringGen($pattern1, $pattern2, ... $patternN); >>  
   
 Returns a random string derived from a randomly-chosen format pattern. The pattern  
 can either be a number (indicating the number of characters desired, or the letter  
 C<P> followed by a picture. The picture should contain C<A> when a letter is desired,  
 C<9> when a digit is desired, C<V> when a vowel is desired, C<K> when a consonant is  
 desired, and C<X> when a letter or a digit is desired. Any other character will be  
 translated as a literal.  
   
 =over 4  
   
 =item pattern1, pattern2, ... patternN  
   
 List of patterns to be used to generate string values.  
   
 =item RETURN  
   
 A single string generated from a pattern.  
   
 =back  
   
 =cut  
   
 sub StringGen {  
     # Get the parameters.  
     my @patterns = @_;  
     # Choose the appropriate pattern.  
     my $chosenPattern = RandParam(@patterns);  
     # Declare the return variable.  
     my $retVal = "";  
     # Determine whether this is a count or a picture pattern.  
     if ($chosenPattern =~ m/^\d+/) {  
         # Here we have a count. Get the string of source characters.  
         my $letterString = $PictureTable{'X'};  
         my $stringLen = length $letterString;  
         # Save the number of characters we have to generate.  
         my $charsLeft = $chosenPattern;  
         # Loop until the return variable is full.  
         while ($charsLeft > 0) {  
             # Generate a random position in the soruce string.  
             my $stringIndex = IntGen(0, $stringLen - 1);  
             # Compute the number of characters to pull out of the source string.  
             my $chunkSize = $stringLen - $stringIndex;  
             if ($chunkSize > $charsLeft) { $chunkSize = $charsLeft; }  
             # Stuff this chunk into the return value.  
             $retVal .= substr($letterString, $stringIndex, $chunkSize);  
             # Record the data moved.  
             $charsLeft -= $chunkSize;  
         }  
     } elsif ($chosenPattern =~ m/^P/) {  
         # Here we have a picture string. We will move through the picture one  
         # character at a time generating data.  
         for (my $i = 1; $i < length $chosenPattern; $i++) {  
             # Get this picture character.  
             my $chr = substr($chosenPattern, $i, 1);  
             # Check to see if the picture char is one we recognize.  
             if (exists $PictureTable{$chr}) {  
                 # Choose a random character from the available values for this  
                 # picture character.  
                 $retVal .= RandChar($PictureTable{$chr});  
             } else {  
                 # Copy in the picture character as a literal.  
                 $retVal .= $chr;  
             }  
         }  
     } else {  
         # Here we have neither a picture string or a letter count, so we treat  
         # the string as a literal.  
         $retVal = $chosenPattern;  
     }  
     # Return the string formed.  
     return $retVal;  
 }  
   
 =head3 DateGen  
   
 C<< my $date = DateGen($startDayOffset, $endDayOffset, $minutes); >>  
   
 Return a numeric timestamp within the specified range of days with the specified minute  
 value. The range of days is specified relevant to the current day. Thus, the call  
   
 C<< my $date = DateGen(-1, 5, 720); >>  
   
 will return a timestamp at noon (72 minutes past midnight) sometime during the week that  
 began on the preceding day. If you want a random minute of the day, simply combine with  
 a call to L</IntGen>, as follows.  
   
 C<< my $date = DateGen(-1, 5, IntGen(0, 1439)); >>  
   
 =over 4  
   
 =item startDayOffset  
   
 The earliest day that can be returned, relative to the current day.  
   
 =item endDayOffset  
   
 The latest day that can be returned, related to the current day.  
   
 =item minutes  
   
 Number of minutes into the selected day that should be used.  
   
 =back  
   
 =cut  
   
 sub DateGen {  
     # Get the parameters.  
     my ($startDayOffset, $endDayOffset, $minutes) = @_;  
     # Get midnight of the current day.  
     my $now = time();  
     my ($sec, $min, $hour) = localtime($now);  
     my $today = $now - (($hour * 60 + $min) * 60 + $sec);  
     # Compute the day we want.  
     my $newDay = IntGen($startDayOffset, $endDayOffset) * 86400 + $today;  
     # Add the minutes.  
     my $retVal = $newDay + $minutes * 60;  
     # Return the result.  
     return $retVal;  
 }  
   
 =head3 FloatGen  
   
 C<< my $number = FloatGen($min, $max); >>  
   
 Return a random floating-point number greater than or equal to the specified minimum and  
 less than the specified maximum.  
   
 =over 4  
   
 =item min  
   
 Minimum permissible value for the number returned.  
   
 =item max  
   
 Maximum permissible value for the number returned.  
   
 =item RETURN  
   
 Returns a floating-point number anywhere in the specified range.  
   
 =back  
   
 =cut  
   
 sub FloatGen {  
     # Get the parameters.  
     my ($min, $max) = @_;  
     # Generate the result.  
     my $retVal = rand($max - $min) + $min;  
     return $retVal;  
 }  
   
 =head3 ListGen  
   
 C<< my @list = ListGen($pattern, $count); >>  
   
 Return a list containing a fixed number of randomly-generated strings.  
   
 =over 4  
   
 =item pattern  
   
 A pattern (in the form expected by L</StringGen>) that should be used to generate the  
 strings in the list.  
   
 =item count  
   
 The number of list entries to generate.  
   
 =item RETURN  
   
 Returns a list consisting of the specified number of strings.  
   
 =back  
   
 =cut  
   
 sub ListGen {  
     # Get the parameters.  
     my ($pattern, $count) = @_;  
     # Generate the list.  
     my @retVal = ();  
     for (my $i = 0; $i < $count; $i++) {  
         push @retVal, StringGen($pattern);  
     }  
     # Return it.  
     return @retVal;  
 }  
   
4740  1;  1;

Legend:
Removed from v.1.11  
changed lines
  Added in v.1.76

MCS Webmaster
ViewVC Help
Powered by ViewVC 1.0.3