[Bio] / FigTutorial / SEED_administration_issues.html Repository:
ViewVC logotype

Annotation of /FigTutorial/SEED_administration_issues.html

Parent Directory Parent Directory | Revision Log Revision Log


Revision 1.2 - (view) (download) (as text)

1 : olson 1.2 <h1>SEED Administration</h1>
2 :     <p>This tutorial discusses a number of issues that you will need to know about
3 :     in order to install, share, and maintain your SEED installation.</p>
4 :     <h2>Backing Up Your Data</h2>
5 : olson 1.1 The data and code stored within the SEED are organized as follows:
6 :     <pre>
7 :     ~fig on a Mac: /Users/fig; on Linux: /home/fig
8 :     FIGdisk
9 :     dist source code
10 :     FIG
11 :     Tmp temporary files
12 :     Data data in readable form
13 :     </pre>
14 : olson 1.2 <ol><li>
15 : olson 1.1 The directory <b>FIGdisk</b> holds both the code and data for the
16 :     SEED. The data is loaded into a database system that stores the data
17 :     in a location external to FIGdisk, but otherwise a running SEED is
18 :     encapsulated within FIGdisk. A symbolic link to FIGdisk is maintained
19 :     in the directory ~fig.
20 :     <br>
21 :     <li>
22 :     Within FIGdisk there are a two key directories:
23 :     <br>
24 :     <br><ol><li>
25 :     <b>dist</b> contains the source code, and
26 :    
27 :     <li>
28 :     <b>FIG</b> contains the execution environment and Data.
29 :     </ol>
30 :     <br>
31 :     <li>
32 :     Within FIG, there are a number of directories. The most important are
33 :     <br>
34 :     <br>
35 :     <ol>
36 :     <li>
37 :     <b>Data</b>, which contains all of the data in a human-readable form,
38 :     and
39 :     <br>
40 :     <br>
41 :     <li>
42 :     <b>Tmp</b>, which contains the temporary files built by SEED in
43 :     response to commands.
44 :     </ol>
45 :     </ol>
46 :     <br>
47 :     Hence, to backup your data, you should simply copy the Data
48 :     directory. It should be backed up to a separate disk. Suppose that
49 :     /Volumes/Backup is a backup disk. Then,
50 :     <br>
51 :     <pre>
52 :     cp -pRP /Users/fig/FIGdisk/FIG/Data /Volumes/Backup/Data.Backup
53 :     gzip -r /Volumes/Backup/Data.Backup
54 :     </pre>
55 :     <br>
56 :     would be a reasonable way to make a backup. The copy preserves
57 :     permissions, copies recursively, and does not follow symbolic links.
58 :     <br>
59 : olson 1.2 <h2>Copying a Version of the SEED</h2>
60 : olson 1.1
61 :     To make a second copy of the SEED (either for a friend or for yourself), you should use tar
62 :     to preserve a few symbolic links (which are relative, not absolute; this means that they can
63 :     be copied while still preserving the integrity of the whole system).
64 :     So, suppose that you have a FIGdisk in /Volumes/From/FIGdisk.Jan8 and you wish to copy it
65 :     to /Volumes/To. Use
66 :     <pre>
67 :     cd /Volumes/From
68 :     tar cf - FIGdisk.Jan8 | (cd /Volumes/To; tar xf -)
69 :     </pre>
70 :     <p>This should produce the desired copy. In this case, suppose that we are in a
71 :     Mac OS X
72 :     environment, and <b>From</b> and <b>To</b> are firewire disks. To install the system on a friends
73 :     Mac, you would unmount <b>To</b>, plug it into the new machine, and then set the symbolic link to the active
74 :     FIGdisk using
75 :     <br>
76 :     </p>
77 :     <table border="1" bgcolor="#CCCCCC">
78 :     <tr>
79 :     <td width="403"><font face="Courier New, Courier, mono">cd ~fig</font></td>
80 :     <td width="285">&nbsp;</td>
81 :     </tr>
82 :     <tr>
83 :     <td><font face="Courier New, Courier, mono">rm FIGdisk</font></td>
84 :     <td># fails if there is no existing FIGdisk on the machine</td>
85 :     </tr>
86 :     <tr>
87 :     <td><font face="Courier New, Courier, mono">ln -s /Volumes/To/FIGdisk.Jan8 FIGdisk</font></td>
88 :     <td>&nbsp;</td>
89 :     </tr>
90 :     <tr>
91 : olson 1.2 <td><font face="Courier New, Courier, mono">bash</font></td>
92 :     <td>Switch to using the bash shell</td>
93 :     </tr>
94 :     <tr>
95 : olson 1.1 <td><font face="Courier New, Courier, mono">cd FIGdisk</font></td>
96 :     <td>&nbsp;</td>
97 :     </tr>
98 :     <tr>
99 : olson 1.2 <td height="23"><font face="Courier New, Courier, mono">cp CURRENT_RELEASE DEFAULT_RELEASE</font></td>
100 : olson 1.1 <td># Causes the new configuration to use the code that was running in the
101 :     original installation</td>
102 :     </tr>
103 : olson 1.2 <tr>
104 :     <td height="23"><font face="Courier New, Courier, mono">./configure <em>arch-name</em></font></td>
105 :     <td># Configure the new SEED disk for architecture <em>arch-name</em>. </td>
106 :     </tr>
107 :     <tr>
108 :     <td height="23"><font face="Courier New, Courier, mono"> source config/fig-user-env.sh <br>
109 :     </font></td>
110 :     <td># Set up the environment for using the SEED</td>
111 :     </tr>
112 :     <tr>
113 :     <td height="23"><font face="Courier New, Courier, mono">start-servers <br>
114 :     </font></td>
115 :     <td># Start the database server and registration servers</td>
116 :     </tr>
117 :     <tr>
118 :     <td height="23"><font face="Courier New, Courier, mono">init_FIG <br>
119 :     </font></td>
120 :     <td># Initialize a new relational database</td>
121 :     </tr>
122 :     <tr>
123 :     <td height="23"><font face="Courier New, Courier, mono">fig load_all</font></td>
124 :     <td># Load the database from the SEED data files. This may take several hours</td>
125 :     </tr>
126 :     </table>
127 :     <p>At this point, the new SEED copy should be ready to use. You only need to
128 :     perform the configure, init_FIG, and fig load_all steps once after installing
129 :     a new copy of the SEED. After a reboot or other clean start of the computer,
130 :     you will only have to do these steps:</p>
131 :     <table border="1" bgcolor="#CCCCCC">
132 :     <tr>
133 :     <td width="403"><font face="Courier New, Courier, mono">cd ~fig/FIGdisk</font></td>
134 :     <td width="285">&nbsp;</td>
135 :     </tr>
136 :     <tr>
137 :     <td><font face="Courier New, Courier, mono">bash</font></td>
138 :     <td>Switch to using the bash shell</td>
139 :     </tr>
140 :     <tr>
141 :     <td height="23"><font face="Courier New, Courier, mono"> source config/fig-user-env.sh <br>
142 :     </font></td>
143 :     <td># Set up the environment for using the SEED</td>
144 :     </tr>
145 :     <tr>
146 :     <td height="23"><font face="Courier New, Courier, mono">start-servers <br>
147 :     </font></td>
148 :     <td># Start the database server and registration servers</td>
149 :     </tr>
150 : olson 1.1 </table>
151 : olson 1.2 <p>Upon setting up a new computer for running SEED, you should read the full
152 :     documentation for SEED installation, as it has a number of platform-specific
153 :     modifications that need to be performed. This document can currently be found
154 :     at the following
155 :     location in the SEED Wiki: </p>
156 : olson 1.1 <blockquote>
157 :     <p><a href="http://www-unix.mcs.anl.gov/SEEDWiki/moin.cgi/SeedInstallationInstructions"> http://www-unix.mcs.anl.gov/SEEDWiki/moin.cgi/SeedInstallationInstructions</a></p>
158 :     </blockquote>
159 : olson 1.2 <h2>Running Multiple Copies of the SEED</h2>
160 : olson 1.1
161 :     For individual users that use the SEED to support comparative analysis, a single copy is completely
162 :     adequate. Adding genomes can usually be done without disrupting normal use, and a very occasional major
163 :     reorganization that runs over the weekend is not a big deal.
164 :     <p>
165 :     The situation is somewhat different when the system is being used to support a major sequencing/annotation
166 :     effort. In this case, you have a user community that is sensitive to disruptions of service, and you
167 :     have frequent demands to update versions of data. In this case, it is best to have two systems: the
168 :     <b>production system</b> is used to support the larger user community, and the <b>update system</b> is
169 :     used to prepare updated versions of the system. Even so, work stoppages of 2-5 hours will occur when
170 :     new releases are swapped in. To swap in new data from the update system to the production system,
171 :     you need to
172 :     <ol>
173 :     <li>stop all work on the production machine,
174 :     <li>do a peer-to-peer update from the production machine to the update machine to
175 :     capture all annotations and assignments,
176 :     <li> move the Data directory in the production machine to a backup location,
177 :     <li> move in a copy of the update Data directory, and
178 :     <li> run
179 :     <pre>
180 :     fig load_all
181 :     </pre>
182 :     to reload the production databases with the data from the newly inserted Data directory.
183 :     This will usually take several hours.
184 :     <li> make the production machine available for use.
185 :     </ol>
186 :     Our experience is that anytime a group wishes to share a common production environment,
187 :     this 2-system approach is the way to do it.
188 :     <br>
189 : olson 1.2 <h2>Adding a New Genome to an Existing SEED</h2>
190 : olson 1.1 To add a new genome to a running SEED is fairly easy, but there are a
191 :     number of details that do have to be handled with care.
192 :     <p>
193 :     The first thing to note is that the SEED does not include tools to call genes -- you are expected
194 :     to provide gene calls. This may change at some point, but for now you must call your own genes. A
195 :     number of good tools now exist in the public domain, and you will need to find one that seems adequate
196 :     for your needs.
197 :     <p>
198 :     Let us now
199 :     cover how to prepare the actual data. You need to construct a directory (in somewhere like ~fig/Tmp)
200 :     of the following form:
201 :     <br>
202 :     <table width="100%">
203 :     <tr>
204 :     <td><tt>GenomeId</tt></td>
205 :     <td></td>
206 :     <td></td>
207 :     <td></td>
208 :     <td>of the form xxxx.y where xxxx is the taxon ID and y is an integer</td>
209 :     </tr>
210 :    
211 :     <tr>
212 :     <td></td>
213 :     <td><tt>PROJECT</tt></td>
214 :     <td></td>
215 :     <td></td>
216 :     <td> a file containg a description of the source of the data</td>
217 :     </tr>
218 :    
219 :     <tr>
220 :     <td></td>
221 :     <td><tt>GENOME</tt></td>
222 :     <td></td>
223 :     <td></td>
224 :     <td>a file containing a single line identifying the genus, species and strain</td>
225 :     </tr>
226 :    
227 :     <tr>
228 :     <td></td>
229 :     <td><tt>TAXONOMY</tt></td>
230 :     <td></td>
231 :     <td></td>
232 :     <td>a file containing a single line containing the NCBI taxonomy</td>
233 :     </tr>
234 :    
235 :     <tr>
236 :     <td></td>
237 :     <td><tt>RESTRICTIONS</tt></td>
238 :     <td></td>
239 :     <td></td>
240 :     <td>a file containing a description of distribution restrictions (optional)</td>
241 :     </tr>
242 :    
243 :     <tr>
244 :     <td></td>
245 :     <td><tt>CONTIGS</tt></td>
246 :     <td></td>
247 :     <td></td>
248 :     <td>contigs in fasta format</td>
249 :     </tr>
250 :    
251 :     <tr>
252 :     <td></td>
253 :     <td><tt>assigned_functions</tt></td>
254 :     <td></td>
255 :     <td></td>
256 :     <td>function assignments for the protein-encoding genes (optional)</td>
257 :     </tr>
258 :    
259 :     <tr>
260 :     <td></td>
261 :     <td><tt>Features</tt></td>
262 :     </tr>
263 :    
264 :     <tr>
265 :     <td></td>
266 :     <td></td>
267 :     <td><tt>peg</tt></td>
268 :     </tr>
269 :    
270 :     <tr>
271 :     <td></td>
272 :     <td></td>
273 :     <td></td>
274 :     <td><tt>tbl</tt></td>
275 :     <td>describes locations and aliases for the protein-encoding genes</td>
276 :     </td>
277 :     </tr>
278 :    
279 :     <tr>
280 :     <td></td>
281 :     <td></td>
282 :     <td></td>
283 :     <td><tt>fasta</tt></td>
284 :     <td>fasta file of translations of the protein-encoding genes</td>
285 :     </td>
286 :     </tr>
287 :    
288 :     <tr>
289 :     <td></td>
290 :     <td></td>
291 :     <td><tt>rna</tt></td>
292 :     </tr>
293 :    
294 :     <tr>
295 :     <td></td>
296 :     <td></td>
297 :     <td></td>
298 :     <td><tt>tbl</tt></td>
299 :     <td>describes locations and aliases for the rna-encoding genes</td>
300 :     </td>
301 :     </tr>
302 :    
303 :     <tr>
304 :     <td></td>
305 :     <td></td>
306 :     <td></td>
307 :     <td><tt>fasta</tt></td>
308 :     <td>fasta file of the DNA corresponding to the genes</td>
309 :     </td>
310 :     </tr>
311 :    
312 :    
313 :     </table>
314 :    
315 :     <!--
316 :    
317 :     <pre>
318 :     GenomeID of the form xxxx.y where xxxx is the taxon ID and y is an integer
319 :    
320 :     PROJECT a file containg a description of the source of the data
321 :    
322 :     GENOME a file containing a single line identifying the genus, species and strain
323 :    
324 :     TAXONOMY a file containing a single line containing the NCBI taxonomy
325 :    
326 :     RESTRICTIONS a file containing a description of distribution restrictions (optional)
327 :    
328 :     contigs contigs in fasta format
329 :    
330 :     assigned_functions function assignments for the protein-encoding genes (optional)
331 :    
332 :     Features
333 :    
334 :     peg
335 :     tbl descibes locations and aliases for the protein-encoding genes
336 :    
337 :     fasta fasta file of translations of the protein-encoding genes
338 :    
339 :     rna
340 :     tbl describes locations and aliases for the rna-encoding genes
341 :    
342 :     fasta fasta file of the DNA corresponding to the genes
343 :     </pre>
344 :     -->
345 :     <br>
346 :     <br>
347 :     Let us expand on this very brief description:
348 :     <ol>
349 :     <li>
350 :     The name of the directory must be of the form xxxx.y where xxxx is the
351 :     taxon ID, and y is a sequence number. For example, 562.1 might be
352 :     used for <i>E.coli</i>, since 562 is the NCBI taxon ID for
353 :     <i>Escherichia coli</i>. The sequence number (y) is used to
354 :     distinguish multiple genomes having the same taxon ID.
355 :     <br><br>
356 :     <li>
357 :     The assigned_functions file contains assignments of function for the
358 :     protein-encoding genes. is of the form
359 :     <pre>
360 :     Id\tFunction\tConfidence (\t stands for a tab character)
361 :     </pre>
362 :     The Id must be a valid PEG Id. These are of the form:
363 :     <pre>
364 :     fig|xxxx.y.peg.z
365 :     </pre>
366 :     where xxxx.y is the genome Id, and z is an integer that uniquely distinguishes
367 :     the peg (protein-encoding gene).
368 :     <br>
369 :     <i>Confidence</i> is a single character code:
370 :     <br>
371 :     <ul>
372 :     <li>a space for "normal"
373 :     <li>w for "weak"
374 :     <li>e for experimentally verified
375 :     <li>s for "strong evidence (but not experimental)"
376 :     </ul>
377 :     The second tab and the confidence code can be omitted (it will default to a space).
378 :     The assigned_functions file is optional. You can leave it blank and, after adding the genome
379 :     to the SEED, ask for automated assignments.
380 :     <br><br>
381 :     <li>
382 :     The tbl files specify the locations of genes, as well as any aliases. Each line in a tbl line
383 :     is of the form
384 :     <br>
385 :     <pre>
386 :     Id\tLocation\tAliases (the aliases are separated by tabs)
387 :     </pre>
388 :     The Id must conform to the fig|xxxx.y.peg.z format described above. The <i>Location</i> is of the form
389 :     <br>
390 :     <pre>
391 :     L1,L2,L3...Ln
392 :    
393 :     where each Li describes a region on a contig and is of the form
394 :    
395 :     <i>Contig_Begin_End</i> where
396 :    
397 :     Contig is the Id of the contig,
398 :     Begin is the position of the first character, and
399 :     End is the position of the last character
400 :     </pre>
401 :     <ul>
402 :     <li>if Begin > End, the region being described is on the complementary strand, and
403 :     <li>the End position is the last character preceding the stop codon (i.e., the region
404 :     corresponding to a protein-encoding gene is thought of as including all bases from the
405 :     first base of the start codon to the last base before the stop codon.
406 :     </ul>
407 :     For example,
408 :     <pre>
409 :     fig|562.1.peg.15 Escherichia_coli_K12_14168_15295 dnaJ b0015 sp|P08622 gi|16128009
410 :     </pre>
411 :     describes the <i>dnaJ</i> gene encoded on the positive strand from 14168 through 15295 on the contig Escherichia_coli_K12.
412 :     The gene is from the genome 562.1, and it has 4 specified aliases.
413 :     <li>
414 :     The fasta files must have gene Ids that match tbl file entries. The <i>peg</i> fasta file contains translations,
415 :     while the <i>rna</i> fasta file contains DNA sequences.
416 :     <li>
417 :     Both the <i>peg</i> and the <i>rna</i> subdirectories are optional.
418 :     </ol>
419 :     <br>
420 :     The SEED provides a utility that can be used to produce such a directory from a GenBank entry. Thus,
421 :     <br>
422 :     <pre>
423 :     parse_genbank 562.4 ~/Tmp/562.4 < genbank.entry.for.a.new.E.coli.genome
424 :     </pre>
425 :     would attempt to produce a properly formatted directory (~/Tmp/562.4) containing
426 :     the data encoded in the GenBank entry from the file <i>genbank.entry.for.a.new.E.coli.genome</i>.
427 :     This script is far from perfect, and there is huge variance in encodings in GenBank
428 :     files. So, use it at your own risk (and, manually check the output).
429 :     <p>
430 :     You would be well advised to look at some of the subdirectories included in the FIGdisk/FIG/Data/Organisms directory
431 :     to see examples of how it should be done.
432 :     <p>
433 :     So, supposing that you have built a valid directory (say, <i>/Users/fig/Tmp/562.4</i>), you can add the genome using
434 :     <pre>
435 :     fig add_genome /Users/fig/Tmp/562.4
436 :     </pre>
437 :     <br>
438 :     The <i>add_genome</i> request will add your new genome and queue a computational request that similarities
439 :     be computed for the protein-encoding genes.
440 :    
441 : olson 1.2 <h2>Computing Similarities</h2>
442 : olson 1.1
443 :     Adding a genome does not automatically get similarities computed for the new genome; it queues the request.
444 :     To get the similarities actually computed, you need to establish a computational environment on which
445 :     the blast runs will be made, and then initiate a request on the machine running the SEED.
446 :     <p>
447 :     This is not a completely trivial process because there are a variety of different ways to compute
448 :     similarities:
449 :     <ol>
450 :     <li> You can just compute them on the system running the SEED. This can take several days, but this
451 :     is often a perfectly reasonable way to get the job done.
452 :     <li>Alternatively, you may be in an environment where you have a set of networked machines (say, 4-5 machines),
453 :     and you wish to just exploit these machines to do the blast runs.
454 :     <li> Finally, you may be dealing with a large genome or genomes (and, hence, the need for many days of computation).
455 :     In this case, it makes sense to utilize a large computational resource, and this resource may either
456 :     be a local cluster or a service provided over the net.
457 :     </ol>
458 :     <br>
459 :     To establish the flexibility needed to support all of these alternatives, we implemented the following
460 :     approach:
461 :     <ul>
462 :     <li>
463 :     The user can describe one or more <b>similarity computational environments</b>
464 :     in a configuration file called <i>similarities.config</i>. The details of this encoding
465 :     are beyond the scope of this document.
466 :     These environments all represent potential ways to compute similarities.
467 :     <br>
468 :     <li>
469 :     When a SEED systems administrator (usually, the normal SEED user) wishes to run similarities,
470 :     he runs a program specifying a specific similarity computational environment. This causes all
471 :     the queued similarity requests to be batched up and sent off to the specified server (which may simply
472 :     be on the same machine). He would use the <b>generate_similarities</b> command specifying two parameters: the
473 :     first specifies a similarities computational environment, and the second specifies whether or not automated assignments
474 :     should be computed as the similarity computations complete and the results are installed.
475 :     As the similarities complete, they will automatically be installed. Further, if a set of similarities arrive
476 :     for a given protein-encoding gene, and if there is no current assignment of function for the gene,
477 :     an automated assignment may be computed. Whether or not such automated assignments are computed is determined
478 :     by the second parameter in the command used by the systems administrator to initiate the request. For example,
479 :     <pre>
480 :     generate_similarities local auto-assignments
481 :     </pre>
482 :     specifies a similarity computational environment labeled <i>local</i>, which presumably means "run the blast
483 :     requests on this machine", and requests automated assignments for all protein-encoding genes that currently either
484 :     have no assigned function or have an assigned function that is "hypothetical".
485 :     </ul>
486 :     <br>
487 :    
488 :     We anticipate that at least one major center (Argonne National Lab) and, perhaps, more will create well-defined
489 :     interfaces for handling high-volume requests. At FIG, we will maintain a set of instructions on how to set up
490 :     your configuration to exploit these resources.
491 :    
492 : olson 1.2 <h2>Deleting Genomes from a Version of the SEED </h2>
493 : olson 1.1
494 :     There are two common instances in which one wishes to delete genomes from a running version of the SEED: one is
495 :     when you wish to replace an existing version of a genome (in which case the replacement is viewed as first
496 :     deleting the existing copy and then adding the new copy), and the second is when you wish to create a copy
497 :     of the SEED containing a subset of the entire collection of genomes.
498 :     <p>
499 :     To delete a set of genomes from a running version of the SEED, just use
500 :     <pre>
501 :     fig delete_genomes G1 G2 ...Gn (where G1 G2 ... Gn designates a list of genomes)
502 :     </pre>
503 :     For example,
504 :     <pre>
505 :     fig delete_genomes 562.1
506 :     </pre>
507 :     could be used to delete a single genome with a genome ID of 562.1.
508 :     <p>
509 :     To make a copy with some genomes deleted to give to someone else requires a little different approach.
510 :     To extract a set of genomes from an existing version of the SEED, you need to run the command
511 :     <pre>
512 :     extract_genomes Which ExistingData ExtractedData
513 :     </pre>
514 :    
515 :     The first argument is either the word "unrestricted" or the name of a file containing a list of
516 :     genome IDs (the genomes that are to be retained in the extraction). The second argument is
517 :     the path to the current Data directory. The third argument specifies the name of a directory
518 :     that is created holding the extraction. Thus,
519 :     <pre>
520 :     extract_genomes unrestricted /Users/fig/FIGdisk/FIG/Data /Volumes/Tmp/ExtractedData
521 :     </pre>
522 :     would created the extracted Data directory for you. If you wish to then produce a fully distributable
523 :     version of the SEED from the existing version and the extracted Data directory, you would
524 :     use
525 :     <pre>
526 :     make_a_SEED /Users/fig/FIGdisk /Volumes/Tmp/ExtractedData /Volumes/MyFriend/FIGdisk.ReadyToGo
527 :     rm -rf /Volumes/Tmp/ExtractedData
528 :     <<<< Bob, can you write make_a_SEED??? >>>
529 :     </pre>
530 :    
531 : olson 1.2 <h2>Periodic Reintegration of Similarities</h2>
532 : olson 1.1
533 :     When the initial SEED was constructed, similarities were computed. For most similarities of the form
534 :     "Id1 and Id2 are similar", entries were "recorded" for both Id1 and Id2. This is not always true,
535 :     since we truncate the number of similarities associated with any single Id (leaving us in a situation
536 :     in which we may have similarity recorded for Id1, but not Id2). When a genome is added, if Id1 was an added
537 :     protein-encoding gene (peg), then the similarity is "recorded" for Id1 but not Id2. This means that when looking
538 :     at genes from previously existing organisms, you never get links back to the added pegs. This is not totally
539 :     satisfactory.
540 :     <p>
541 :     Periodically, it is probably a good idea to "reinitegrate the similarities". This can be done by
542 :     just running
543 :     <pre>
544 :     reintegrate_sims
545 :     # update_sims /dev/null /dev/null ~/FIGdisk/FIG/Data/NewSims/* ; rm -f ~/FIGdisk/FIG/Data/NewSims/* index_sims
546 :     </pre>
547 :     The job will probably run for quite a while (perhaps as much as a day or two).
548 :    
549 : olson 1.2 <h2>Computing "Pins" and "Clusters"</h2>
550 : olson 1.1
551 :     The SEED displays potentially significant clusters on prokaryotic chromosomes. In the
552 :     process of finding preserved contiguity, it computes "pins", which are simply a set of genes
553 :     that are believed to be orthologs that cluster with similar genes. If you add your own genome,
554 :     you will probably want to compute and enter these into the active database. This can be done
555 :     using
556 :     <pre>
557 :     compute_pins_and_clusters G1 G2 G3 ...
558 :     </pre>
559 :     where the arguments are genome Ids. Thus,
560 :     <pre>
561 :     compute_pins_and_clusters 562.4
562 :     </pre>
563 :     would compute and add entries for all of the <i>pegs</i> in genome 562.4.

MCS Webmaster
ViewVC Help
Powered by ViewVC 1.0.3