Parent Directory
|
Revision Log
Revision 1.323 - (view) (download) (as text)
1 : | efrank | 1.1 | package FIG; |
2 : | |||
3 : | olson | 1.111 | use strict; |
4 : | |||
5 : | overbeek | 1.135 | use Fcntl qw/:flock/; # import LOCK_* constants |
6 : | |||
7 : | olson | 1.116 | use POSIX; |
8 : | olson | 1.158 | use IPC::Open2; |
9 : | olson | 1.116 | |
10 : | efrank | 1.1 | use DBrtns; |
11 : | use Sim; | ||
12 : | use Blast; | ||
13 : | use FIG_Config; | ||
14 : | overbeek | 1.322 | use FullLocation; |
15 : | overbeek | 1.36 | use tree_utilities; |
16 : | olson | 1.93 | use Subsystem; |
17 : | olson | 1.162 | use SeedDas; |
18 : | olson | 1.183 | use Construct; |
19 : | parrello | 1.200 | use FIGRules; |
20 : | parrello | 1.210 | use Tracer; |
21 : | olson | 1.297 | use GenomeIDMap; |
22 : | olson | 1.260 | |
23 : | olson | 1.245 | eval { require FigGFF; }; |
24 : | parrello | 1.287 | if ($@ and $ENV{USER} eq "olson") { |
25 : | olson | 1.260 | warn $@; |
26 : | } | ||
27 : | olson | 1.79 | |
28 : | # | ||
29 : | # Conditionally evaluate this in case its prerequisites are not available. | ||
30 : | # | ||
31 : | |||
32 : | our $ClearinghouseOK = eval { | ||
33 : | require Clearinghouse; | ||
34 : | }; | ||
35 : | efrank | 1.1 | |
36 : | olson | 1.10 | use IO::Socket; |
37 : | |||
38 : | efrank | 1.1 | use FileHandle; |
39 : | |||
40 : | use Carp; | ||
41 : | use Data::Dumper; | ||
42 : | overbeek | 1.25 | use Time::Local; |
43 : | olson | 1.93 | use File::Spec; |
44 : | olson | 1.123 | use File::Copy; |
45 : | olson | 1.112 | # |
46 : | # Try to load the RPC stuff; it might fail on older versions of the software. | ||
47 : | # | ||
48 : | eval { | ||
49 : | require FIGrpc; | ||
50 : | }; | ||
51 : | |||
52 : | my $xmlrpc_available = 1; | ||
53 : | parrello | 1.287 | if ($@ ne "") { |
54 : | olson | 1.112 | $xmlrpc_available = 0; |
55 : | } | ||
56 : | |||
57 : | efrank | 1.1 | |
58 : | olson | 1.111 | use FIGAttributes; |
59 : | use base 'FIGAttributes'; | ||
60 : | |||
61 : | use vars qw(%_FunctionAttributes); | ||
62 : | |||
63 : | use Data::Dumper; | ||
64 : | |||
65 : | olson | 1.124 | # |
66 : | # Force all new files to be all-writable. | ||
67 : | # | ||
68 : | |||
69 : | umask 0; | ||
70 : | |||
71 : | parrello | 1.210 | =head1 FIG Genome Annotation System |
72 : | |||
73 : | =head2 Introduction | ||
74 : | |||
75 : | This is the main object for access to the SEED data store. The data store | ||
76 : | itself is a combination of flat files and a database. The flat files can | ||
77 : | be moved easily between systems and the database rebuilt as needed. | ||
78 : | |||
79 : | A reduced set of this object's functions are available via the B<SFXlate> | ||
80 : | object. The SFXlate object uses a single database to represent all its | ||
81 : | genomic information. It provides a much smaller capability for updating | ||
82 : | the data, and eliminates all similarities except for bidirectional best | ||
83 : | hits. | ||
84 : | |||
85 : | The key to making the FIG system work is proper configuration of the | ||
86 : | C<FIG_Config.pm> file. This file contains names and URLs for the key | ||
87 : | directories as well as the type and login information for the database. | ||
88 : | |||
89 : | parrello | 1.287 | FIG was designed to operate as a series of peer instances. Each instance is |
90 : | updated independently by its owner, and the instances can be synchronized | ||
91 : | using a process called a I<peer-to-peer update>. The terms | ||
92 : | I<SEED instance> and I<peer> are used more-or-less interchangeably. | ||
93 : | |||
94 : | The POD documentation for this module is still in progress, and is provided | ||
95 : | on an AS IS basis without warranty. If you have a correction and you're | ||
96 : | not a developer, EMAIL the details to B<bruce@gigabarb.com> and I'll fold | ||
97 : | it in. | ||
98 : | |||
99 : | B<NOTE>: The usage example for each method specifies whether it is static | ||
100 : | |||
101 : | FIG::something | ||
102 : | |||
103 : | or dynamic | ||
104 : | |||
105 : | $fig->something | ||
106 : | |||
107 : | If the method is static and has no parameters (C<FIG::something()>) it can | ||
108 : | parrello | 1.298 | also be invoked dynamically. This is a general artifact of the |
109 : | parrello | 1.287 | way PERL implements object-oriented programming. |
110 : | |||
111 : | =head2 Hiding/Caching in a FIG object | ||
112 : | |||
113 : | We save the DB handle, cache taxonomies, and put a few other odds and ends in the | ||
114 : | FIG object. We expect users to invoke these services using the object $fig constructed | ||
115 : | using: | ||
116 : | |||
117 : | use FIG; | ||
118 : | my $fig = new FIG; | ||
119 : | |||
120 : | $fig is then used as the basic mechanism for accessing FIG services. It is, of course, | ||
121 : | just a hash that is used to retain/cache data. The most commonly accessed item is the | ||
122 : | DB filehandle, which is accessed via $self->db_handle. | ||
123 : | |||
124 : | We cache genus/species expansions, taxonomies, distances (very crudely estimated) estimated | ||
125 : | between genomes, and a variety of other things. | ||
126 : | |||
127 : | parrello | 1.210 | =cut |
128 : | |||
129 : | parrello | 1.287 | |
130 : | parrello | 1.210 | #: Constructor FIG->new(); |
131 : | |||
132 : | =head2 Public Methods | ||
133 : | |||
134 : | =head3 new | ||
135 : | |||
136 : | C<< my $fig = FIG->new(); >> | ||
137 : | |||
138 : | parrello | 1.298 | This is the constructor for a FIG object. It uses no parameters. If tracing |
139 : | has not yet been turned on, it will be turned on here. The tracing type and | ||
140 : | level are specified by the configuration variables C<$FIG_Config::trace_levels> | ||
141 : | parrello | 1.301 | and C<$FIG_Config::trace_type>. These defaults can be overridden using the |
142 : | environment variables C<Trace> and C<TraceType>, respectively. | ||
143 : | parrello | 1.210 | |
144 : | =cut | ||
145 : | |||
146 : | efrank | 1.1 | sub new { |
147 : | my($class) = @_; | ||
148 : | |||
149 : | olson | 1.102 | # |
150 : | # Check to see if we have a FIG_URL environment variable set. | ||
151 : | # If we do, don't actually create a FIG object, but rather | ||
152 : | # create a FIGrpc and return that as the return from this constructor. | ||
153 : | # | ||
154 : | |||
155 : | parrello | 1.210 | if ($ENV{FIG_URL} ne "" && $xmlrpc_available) { |
156 : | Trace("Creating figrpc for '$ENV{FIG_URL}'") if T(0); | ||
157 : | my $figrpc = new FIGrpc($ENV{FIG_URL}); | ||
158 : | return $figrpc; | ||
159 : | olson | 1.102 | } |
160 : | parrello | 1.292 | # Here we have the normal case. Check for default tracing. We only do this if |
161 : | # the proper parameters are present and nobody else has set up tracing yet. | ||
162 : | parrello | 1.301 | if (Tracer::Setups() == 0 && (defined $FIG_Config::trace_levels || exists $ENV{Trace})) { |
163 : | # Tracing is not active and the user has specified tracing levels, so it's safe for | ||
164 : | # us to set it up using our own rules. First, the trace type: the default is WARN. | ||
165 : | my $trace_type; | ||
166 : | if (exists($ENV{TraceType})) { | ||
167 : | $trace_type = $ENV{TraceType}; | ||
168 : | } elsif (defined($FIG_Config::trace_type)) { | ||
169 : | $trace_type = $FIG_Config::trace_type; | ||
170 : | } else { | ||
171 : | $trace_type = "WARN"; | ||
172 : | } | ||
173 : | # Now the trace levels. The environment variable wins over the FIG_Config value. | ||
174 : | my $trace_levels = (exists($ENV{Trace}) ? $ENV{Trace} : $FIG_Config::trace_levels); | ||
175 : | TSetup($trace_levels, $trace_type); | ||
176 : | parrello | 1.287 | } |
177 : | # Connect to the database, then return ourselves. | ||
178 : | efrank | 1.1 | my $rdbH = new DBrtns; |
179 : | bless { | ||
180 : | parrello | 1.210 | _dbf => $rdbH, |
181 : | }, $class; | ||
182 : | efrank | 1.1 | } |
183 : | |||
184 : | parrello | 1.287 | =head3 db_handle |
185 : | |||
186 : | C<< my $dbh = $fig->db_handle; >> | ||
187 : | |||
188 : | Return the handle to the internal B<DBrtns> object. This allows direct access to | ||
189 : | the database methods. | ||
190 : | |||
191 : | =cut | ||
192 : | |||
193 : | sub db_handle { | ||
194 : | my($self) = @_; | ||
195 : | return $self->{_dbf}; | ||
196 : | } | ||
197 : | |||
198 : | overbeek | 1.293 | sub table_exists { |
199 : | my($self,$table) = @_; | ||
200 : | |||
201 : | my $rdbH = $self->db_handle; | ||
202 : | return $rdbH->table_exists($table); | ||
203 : | } | ||
204 : | parrello | 1.292 | |
205 : | parrello | 1.287 | =head3 cached |
206 : | |||
207 : | C<< my $x = $fig->cached($name); >> | ||
208 : | |||
209 : | Return a reference to a hash containing transient data. If no hash exists with the | ||
210 : | specified name, create an empty one under that name and return it. | ||
211 : | |||
212 : | The idea behind this method is to allow clients to cache data in the FIG object for | ||
213 : | later use. (For example, a method might cache feature data so that it can be | ||
214 : | retrieved later without using the database.) This facility should be used sparingly, | ||
215 : | since different clients may destroy each other's data if they use the same name. | ||
216 : | |||
217 : | =over 4 | ||
218 : | |||
219 : | =item name | ||
220 : | |||
221 : | Name assigned to the cached data. | ||
222 : | |||
223 : | =item RETURN | ||
224 : | |||
225 : | Returns a reference to a hash that is permanently associated with the specified name. | ||
226 : | If no such hash exists, an empty one will be created for the purpose. | ||
227 : | |||
228 : | =back | ||
229 : | |||
230 : | =cut | ||
231 : | |||
232 : | sub cached { | ||
233 : | my($self,$what) = @_; | ||
234 : | |||
235 : | my $x = $self->{$what}; | ||
236 : | if (! $x) { | ||
237 : | $x = $self->{$what} = {}; | ||
238 : | } | ||
239 : | return $x; | ||
240 : | } | ||
241 : | parrello | 1.210 | |
242 : | =head3 get_system_name | ||
243 : | |||
244 : | C<< my $name = $fig->get_system_name; >> | ||
245 : | |||
246 : | Returns C<seed>, indicating that this is object is using the SEED | ||
247 : | database. The same method on an SFXlate object will return C<sprout>. | ||
248 : | |||
249 : | =cut | ||
250 : | #: Return Type $; | ||
251 : | sub get_system_name { | ||
252 : | olson | 1.207 | return "seed"; |
253 : | olson | 1.205 | } |
254 : | parrello | 1.210 | |
255 : | parrello | 1.287 | =head3 DESTROY |
256 : | |||
257 : | The destructor releases the database handle. | ||
258 : | |||
259 : | =cut | ||
260 : | olson | 1.205 | |
261 : | parrello | 1.287 | sub DESTROY { |
262 : | efrank | 1.1 | my($self) = @_; |
263 : | my($rdbH); | ||
264 : | |||
265 : | parrello | 1.210 | if ($rdbH = $self->db_handle) { |
266 : | $rdbH->DESTROY; | ||
267 : | efrank | 1.1 | } |
268 : | } | ||
269 : | |||
270 : | parrello | 1.210 | =head3 delete_genomes |
271 : | |||
272 : | C<< $fig->delete_genomes(\@genomes); >> | ||
273 : | |||
274 : | Delete the specified genomes from the data store. This requires making | ||
275 : | system calls to move and delete files. | ||
276 : | |||
277 : | =cut | ||
278 : | #: Return Type ; | ||
279 : | overbeek | 1.7 | sub delete_genomes { |
280 : | my($self,$genomes) = @_; | ||
281 : | my $tmpD = "$FIG_Config::temp/tmp.deleted.$$"; | ||
282 : | my $tmp_Data = "$FIG_Config::temp/Data.$$"; | ||
283 : | |||
284 : | my %to_del = map { $_ => 1 } @$genomes; | ||
285 : | open(TMP,">$tmpD") || die "could not open $tmpD"; | ||
286 : | |||
287 : | my $genome; | ||
288 : | parrello | 1.287 | foreach $genome ($self->genomes) { |
289 : | if (! $to_del{$genome}) { | ||
290 : | print TMP "$genome\n"; | ||
291 : | } | ||
292 : | overbeek | 1.7 | } |
293 : | close(TMP); | ||
294 : | |||
295 : | &run("extract_genomes $tmpD $FIG_Config::data $tmp_Data"); | ||
296 : | parrello | 1.200 | |
297 : | overbeek | 1.47 | # &run("mv $FIG_Config::data $FIG_Config::data.deleted; mv $tmp_Data $FIG_Config::data; fig load_all; rm -rf $FIG_Config::data.deleted"); |
298 : | parrello | 1.200 | |
299 : | &run("mv $FIG_Config::data $FIG_Config::data.deleted"); | ||
300 : | overbeek | 1.47 | &run("mv $tmp_Data $FIG_Config::data"); |
301 : | &run("fig load_all"); | ||
302 : | &run("rm -rf $FIG_Config::data.deleted"); | ||
303 : | overbeek | 1.7 | } |
304 : | parrello | 1.200 | |
305 : | parrello | 1.210 | =head3 add_genome |
306 : | |||
307 : | C<< my $ok = $fig->add_genome($genomeF); >> | ||
308 : | |||
309 : | Add a new genome to the data store. A genome's data is kept in a directory | ||
310 : | parrello | 1.287 | by itself, underneath the main organism directory. This method essentially |
311 : | moves genome data from an external directory to the main directory and | ||
312 : | performs some indexing tasks to integrate it. | ||
313 : | parrello | 1.210 | |
314 : | =over 4 | ||
315 : | |||
316 : | =item genomeF | ||
317 : | |||
318 : | parrello | 1.287 | Name of the directory containing the genome files. This should be a |
319 : | fully-qualified directory name. The last segment of the directory | ||
320 : | name should be the genome ID. | ||
321 : | parrello | 1.210 | |
322 : | =item RETURN | ||
323 : | |||
324 : | Returns TRUE if successful, else FALSE. | ||
325 : | |||
326 : | =back | ||
327 : | |||
328 : | =cut | ||
329 : | #: Return Type $; | ||
330 : | efrank | 1.1 | sub add_genome { |
331 : | my($self,$genomeF) = @_; | ||
332 : | |||
333 : | my $rc = 0; | ||
334 : | olson | 1.93 | |
335 : | my(undef, $path, $genome) = File::Spec->splitpath($genomeF); | ||
336 : | |||
337 : | parrello | 1.287 | if ($genome !~ /^\d+\.\d+$/) { |
338 : | warn "Invalid genome filename $genomeF\n"; | ||
339 : | return $rc; | ||
340 : | olson | 1.93 | } |
341 : | |||
342 : | parrello | 1.287 | if (-d $FIG_Config::organisms/$genome) { |
343 : | warn "Organism already exists for $genome\n"; | ||
344 : | return $rc; | ||
345 : | olson | 1.93 | } |
346 : | parrello | 1.200 | |
347 : | olson | 1.93 | |
348 : | # | ||
349 : | # We're okay, it doesn't exist. | ||
350 : | # | ||
351 : | |||
352 : | my @errors = `$FIG_Config::bin/verify_genome_directory $genomeF`; | ||
353 : | |||
354 : | parrello | 1.287 | if (@errors) { |
355 : | warn "Errors found while verifying genome directory $genomeF:\n"; | ||
356 : | print join("", @errors); | ||
357 : | return $rc; | ||
358 : | olson | 1.93 | } |
359 : | parrello | 1.200 | |
360 : | olson | 1.93 | &run("cp -r $genomeF $FIG_Config::organisms"); |
361 : | &run("chmod -R 777 $FIG_Config::organisms/$genome"); | ||
362 : | |||
363 : | &run("index_contigs $genome"); | ||
364 : | &run("compute_genome_counts $genome"); | ||
365 : | &run("load_features $genome"); | ||
366 : | |||
367 : | $rc = 1; | ||
368 : | parrello | 1.287 | if (-s "$FIG_Config::organisms/$genome/Features/peg/fasta") { |
369 : | &run("index_translations $genome"); | ||
370 : | my @tmp = `cut -f1 $FIG_Config::organisms/$genome/Features/peg/tbl`; | ||
371 : | chomp @tmp; | ||
372 : | &run("cat $FIG_Config::organisms/$genome/Features/peg/fasta >> $FIG_Config::data/Global/nr"); | ||
373 : | &enqueue_similarities(\@tmp); | ||
374 : | olson | 1.93 | } |
375 : | if ((-s "$FIG_Config::organisms/$genome/assigned_functions") || | ||
376 : | parrello | 1.287 | (-d "$FIG_Config::organisms/$genome/UserModels")) { |
377 : | &run("add_assertions_of_function $genome"); | ||
378 : | efrank | 1.1 | } |
379 : | parrello | 1.200 | |
380 : | efrank | 1.1 | return $rc; |
381 : | } | ||
382 : | |||
383 : | parrello | 1.287 | =head3 parse_genome_args |
384 : | |||
385 : | C<< my ($mode, @genomes) = FIG::parse_genome_args(@args); >> | ||
386 : | |||
387 : | Extract a list of genome IDs from an argument list. If the argument list is empty, | ||
388 : | return all the genomes in the data store. | ||
389 : | |||
390 : | This is a function that is performed by many of the FIG command-line utilities. The | ||
391 : | user has the option of specifying a list of specific genome IDs or specifying none | ||
392 : | in order to get all of them. If your command requires additional arguments in the | ||
393 : | command line, you can still use this method if you shift them out of the argument list | ||
394 : | before calling. The $mode return value will be C<all> if the user asked for all of | ||
395 : | the genomes or C<some> if he specified a list of IDs. This is useful to know if, | ||
396 : | for example, we are loading a table. If we're loading everything, we can delete the | ||
397 : | entire table; if we're only loading some genomes, we must delete them individually. | ||
398 : | |||
399 : | This method uses the genome directory rather than the database because it may be used | ||
400 : | before the database is ready. | ||
401 : | |||
402 : | =over 4 | ||
403 : | |||
404 : | =item args1, args2, ... argsN | ||
405 : | |||
406 : | List of genome IDs. If all genome IDs are to be processed, then this list should be | ||
407 : | empty. | ||
408 : | |||
409 : | =item RETURN | ||
410 : | |||
411 : | Returns a list. The first element of the list is C<all> if the user is asking for all | ||
412 : | the genome IDs and C<some> otherwise. The remaining elements of the list are the | ||
413 : | desired genome IDs. | ||
414 : | |||
415 : | =back | ||
416 : | |||
417 : | =cut | ||
418 : | |||
419 : | sub parse_genome_args { | ||
420 : | # Get the parameters. | ||
421 : | my @args = @_; | ||
422 : | # Check the mode. | ||
423 : | my $mode = (@args > 0 ? 'some' : 'all'); | ||
424 : | # Build the return list. | ||
425 : | my @retVal = ($mode); | ||
426 : | # Process according to the mode. | ||
427 : | if ($mode eq 'all') { | ||
428 : | # We want all the genomes, so we get them from the organism directory. | ||
429 : | my $orgdir = "$FIG_Config::organisms"; | ||
430 : | opendir( GENOMES, $orgdir ) || Confess("Could not open directory $orgdir"); | ||
431 : | push @retVal, grep { $_ =~ /^\d/ } readdir( GENOMES ); | ||
432 : | closedir( GENOMES ); | ||
433 : | } else { | ||
434 : | # We want only the genomes specified by the user. | ||
435 : | push @retVal, @args; | ||
436 : | } | ||
437 : | # Return the result. | ||
438 : | return @retVal; | ||
439 : | } | ||
440 : | |||
441 : | =head3 reload_table | ||
442 : | |||
443 : | C<< $fig->reload_table($mode, $table, $flds, $xflds, $fileName, $keyList, $keyName); >> | ||
444 : | |||
445 : | Reload a database table from a sequential file. If I<$mode> is C<all>, the table | ||
446 : | will be dropped and re-created. If I<$mode> is C<some>, the data for the individual | ||
447 : | items in I<$keyList> will be deleted before the table is loaded. Thus, the load | ||
448 : | process is optimized for the type of reload. | ||
449 : | |||
450 : | =over 4 | ||
451 : | |||
452 : | =item mode | ||
453 : | |||
454 : | C<all> if we are reloading the entire table, C<some> if we are only reloading | ||
455 : | specific entries. | ||
456 : | |||
457 : | =item table | ||
458 : | |||
459 : | Name of the table to reload. | ||
460 : | |||
461 : | =item flds | ||
462 : | |||
463 : | String defining the table columns, in SQL format. In general, this is a | ||
464 : | comma-delimited set of field specifiers, each specifier consisting of the | ||
465 : | field name followed by the field type and any optional qualifiers (such as | ||
466 : | C<NOT NULL> or C<DEFAULT>); however, it can be anything that would appear | ||
467 : | between the parentheses in a C<CREATE TABLE> statement. The order in which | ||
468 : | the fields are specified is important, since it is presumed that is the | ||
469 : | order in which they are appearing in the load file. | ||
470 : | |||
471 : | =item xflds | ||
472 : | |||
473 : | Reference to a hash that describes the indexes. The hash is keyed by index name. | ||
474 : | The value is the index's field list. This is a comma-delimited list of field names | ||
475 : | in order from most significant to least significant. If a field is to be indexed | ||
476 : | in descending order, its name should be followed by the qualifier C<DESC>. For | ||
477 : | example, the following I<$xflds> value will create two indexes, one for name followed | ||
478 : | by creation date in reverse chronological order, and one for ID. | ||
479 : | |||
480 : | { name_index => "name, createDate DESC", id_index => "id" } | ||
481 : | |||
482 : | =item fileName | ||
483 : | |||
484 : | Fully-qualified name of the file containing the data to load. Each line of the | ||
485 : | file must correspond to a record, and the fields must be arranged in order and | ||
486 : | parrello | 1.298 | tab-delimited. If the file name is omitted, the table is dropped and re-created |
487 : | but not loaded. | ||
488 : | parrello | 1.287 | |
489 : | =item keyList | ||
490 : | |||
491 : | Reference to a list of the IDs for the objects being reloaded. This parameter is | ||
492 : | only used if I<$mode> is C<some>. | ||
493 : | |||
494 : | =item keyName (optional) | ||
495 : | |||
496 : | Name of the key field containing the IDs in the keylist. If omitted, C<genome> is | ||
497 : | assumed. | ||
498 : | |||
499 : | =back | ||
500 : | |||
501 : | =cut | ||
502 : | |||
503 : | sub reload_table { | ||
504 : | parrello | 1.298 | # Get the parameters. |
505 : | my ($self, $mode, $table, $flds, $xflds, $fileName, $keyList, $keyName) = @_; | ||
506 : | parrello | 1.287 | if (!defined $keyName) { |
507 : | $keyName = 'genome'; | ||
508 : | } | ||
509 : | # Get the database handler. | ||
510 : | my $dbf = $self->{_dbf}; | ||
511 : | parrello | 1.298 | # Call the DBKernel method. |
512 : | $dbf->reload_table($mode, $table, $flds, $xflds, $fileName, $keyList, $keyName); | ||
513 : | parrello | 1.287 | } |
514 : | |||
515 : | parrello | 1.210 | =head3 enqueue_similarities |
516 : | olson | 1.93 | |
517 : | parrello | 1.287 | C<< FIG::enqueue_similarities(\@fids); >> |
518 : | |||
519 : | Queue the passed Feature IDs for similarity computation. The actual | ||
520 : | computation is performed by L</create_sim_askfor_pool>. The queue is a | ||
521 : | persistent text file in the global data directory, and this method | ||
522 : | essentially writes new IDs on the end of it. | ||
523 : | |||
524 : | =over 4 | ||
525 : | |||
526 : | =item fids | ||
527 : | |||
528 : | Reference to a list of feature IDs. | ||
529 : | olson | 1.93 | |
530 : | parrello | 1.287 | =back |
531 : | olson | 1.93 | |
532 : | =cut | ||
533 : | parrello | 1.210 | #: Return Type ; |
534 : | olson | 1.93 | sub enqueue_similarities { |
535 : | efrank | 1.1 | my($fids) = @_; |
536 : | my $fid; | ||
537 : | |||
538 : | olson | 1.93 | my $sim_q = "$FIG_Config::global/queued_similarities"; |
539 : | |||
540 : | open(TMP,">>$sim_q") | ||
541 : | parrello | 1.287 | || die "could not open $sim_q"; |
542 : | olson | 1.93 | |
543 : | # | ||
544 : | # We need to lock here so that if a computation is creating a snapshot of the | ||
545 : | # queue, we block until it's done. | ||
546 : | # | ||
547 : | |||
548 : | flock(TMP, LOCK_EX) or die "Cannot lock $sim_q\n"; | ||
549 : | |||
550 : | parrello | 1.287 | foreach $fid (@$fids) { |
551 : | print TMP "$fid\n"; | ||
552 : | efrank | 1.1 | } |
553 : | close(TMP); | ||
554 : | olson | 1.10 | } |
555 : | |||
556 : | olson | 1.281 | =head3 export_similarity_request |
557 : | |||
558 : | Creates a similarity computation request from the queued similarities and | ||
559 : | parrello | 1.287 | the current NR. |
560 : | olson | 1.281 | |
561 : | We keep track of the exported requests in case one gets lost. | ||
562 : | |||
563 : | =cut | ||
564 : | |||
565 : | parrello | 1.287 | sub export_similarity_request { |
566 : | olson | 1.281 | my($self, $nr_file, $fasta_file) = @_; |
567 : | |||
568 : | my $req_dir = "$FIG_Config::fig/var/sim_requests"; | ||
569 : | &verify_dir("$FIG_Config::fig/var"); | ||
570 : | &verify_dir($req_dir); | ||
571 : | |||
572 : | $req_dir = "$req_dir/" . time; | ||
573 : | &verify_dir($req_dir); | ||
574 : | |||
575 : | # | ||
576 : | # Open all of our output files before zeroing out the sim queue, in case | ||
577 : | # there is a problem. | ||
578 : | # | ||
579 : | |||
580 : | open(my $user_fasta_fh, ">$fasta_file") or confess "Cannot open $fasta_file for writing: $!"; | ||
581 : | open(my $fasta_fh, ">$req_dir/fasta.in"); | ||
582 : | |||
583 : | open(my $user_nr_fh, ">$nr_file") or confess "Cannot open $nr_file for writing: $!"; | ||
584 : | open(my $nr_fh, ">$req_dir/nr") or confess "Cannot open $req_dir/nr for writing: $!"; | ||
585 : | |||
586 : | open(my $nr_read_fh, "<$FIG_Config::data/Global/nr") or die "Cannot open $FIG_Config::data/Global/nr for reading: $!"; | ||
587 : | parrello | 1.287 | |
588 : | olson | 1.281 | my $sim_q = "$FIG_Config::global/queued_similarities"; |
589 : | |||
590 : | # | ||
591 : | # We need to lock here so that if a computation is creating a snapshot of the | ||
592 : | # queue, we block until it's done. | ||
593 : | # | ||
594 : | |||
595 : | open(my $sim_q_lock, ">>$sim_q") or confess "could not open $sim_q"; | ||
596 : | flock($sim_q_lock, LOCK_EX) or confess "Cannot lock $sim_q\n"; | ||
597 : | |||
598 : | # | ||
599 : | # Everything open & locked, start copying. | ||
600 : | # | ||
601 : | parrello | 1.287 | |
602 : | olson | 1.281 | copy("$sim_q", "$req_dir/q") or confess "Copy $sim_q $req_dir/q failed: $!"; |
603 : | parrello | 1.287 | |
604 : | olson | 1.281 | my($buf); |
605 : | parrello | 1.287 | while (1) { |
606 : | my $n = read($nr_read_fh, $buf, 4096); | ||
607 : | defined($n) or confess "Error reading nr: $!"; | ||
608 : | last unless $n; | ||
609 : | syswrite($user_nr_fh, $buf) or confess "Error writing $nr_file: $!"; | ||
610 : | syswrite($nr_fh, $buf) or confess "Error writing $req_dir/nr: $!"; | ||
611 : | olson | 1.281 | } |
612 : | |||
613 : | close($nr_read_fh); | ||
614 : | close($nr_fh); | ||
615 : | close($user_nr_fh); | ||
616 : | |||
617 : | # | ||
618 : | # We can zero out the queue and unlock now. | ||
619 : | # | ||
620 : | |||
621 : | open(F, ">$sim_q") or die "Cannot open $sim_q to truncate it: $!\n"; | ||
622 : | close(F); | ||
623 : | parrello | 1.287 | |
624 : | olson | 1.281 | close($sim_q_lock); |
625 : | |||
626 : | # | ||
627 : | # Generate the fasta input from the queued ids. | ||
628 : | # | ||
629 : | |||
630 : | open(my $q_fh, "<$req_dir/q"); | ||
631 : | parrello | 1.287 | while (my $id = <$q_fh>) { |
632 : | chomp $id; | ||
633 : | olson | 1.281 | |
634 : | parrello | 1.287 | my $seq = $self->get_translation($id); |
635 : | olson | 1.281 | |
636 : | parrello | 1.287 | display_id_and_seq($id, \$seq, $user_fasta_fh); |
637 : | display_id_and_seq($id, \$seq, $fasta_fh); | ||
638 : | olson | 1.281 | } |
639 : | close($q_fh); | ||
640 : | |||
641 : | close($user_fasta_fh); | ||
642 : | close($fasta_fh); | ||
643 : | } | ||
644 : | |||
645 : | parrello | 1.210 | =head3 create_sim_askfor_pool |
646 : | olson | 1.93 | |
647 : | parrello | 1.287 | C<< $fig->create_sim_askfor_pool($chunk_size); >> |
648 : | olson | 1.93 | |
649 : | parrello | 1.287 | Creates an askfor pool, which a snapshot of the current NR and similarity |
650 : | queue. This process clears the old queue. | ||
651 : | olson | 1.123 | |
652 : | The askfor pool needs to keep track of which sequences need to be | ||
653 : | calculated, which have been handed out, etc. To simplify this task we | ||
654 : | olson | 1.279 | chunk the sequences into fairly small numbers (20k characters) and |
655 : | olson | 1.123 | allocate work on a per-chunk basis. We make use of the relational |
656 : | database to keep track of chunk status as well as the seek locations | ||
657 : | into the file of sequence data. The initial creation of the pool | ||
658 : | involves indexing the sequence data with seek offsets and lengths and | ||
659 : | populating the sim_askfor_index table with this information and with | ||
660 : | initial status information. | ||
661 : | olson | 1.93 | |
662 : | parrello | 1.287 | =over 4 |
663 : | |||
664 : | =item chunk_size | ||
665 : | |||
666 : | Number of features to put into a processing chunk. The default is 15. | ||
667 : | |||
668 : | =back | ||
669 : | |||
670 : | parrello | 1.200 | =cut |
671 : | parrello | 1.210 | #: Return Type $; |
672 : | parrello | 1.287 | sub create_sim_askfor_pool { |
673 : | olson | 1.123 | my($self, $chunk_size) = @_; |
674 : | |||
675 : | olson | 1.279 | $chunk_size = 20000 unless $chunk_size =~ /^\d+$/; |
676 : | olson | 1.93 | |
677 : | olson | 1.279 | my $pool_dir = "$FIG_Config::fig/var/sim_pools"; |
678 : | olson | 1.93 | &verify_dir($pool_dir); |
679 : | |||
680 : | # | ||
681 : | # Lock the pool directory. | ||
682 : | # | ||
683 : | open(my $lock, ">$pool_dir/lockfile"); | ||
684 : | |||
685 : | flock($lock, LOCK_EX); | ||
686 : | |||
687 : | my $num = 0; | ||
688 : | parrello | 1.287 | if (open(my $toc, "<$pool_dir/TOC")) { |
689 : | while (<$toc>) { | ||
690 : | chomp; | ||
691 : | # print STDERR "Have toc entry $_\n"; | ||
692 : | my ($idx, $time, $str) = split(/\s+/, $_, 3); | ||
693 : | olson | 1.93 | |
694 : | parrello | 1.287 | $num = max($num, $idx); |
695 : | } | ||
696 : | close($toc); | ||
697 : | olson | 1.93 | } |
698 : | $num++; | ||
699 : | open(my $toc, ">>$pool_dir/TOC") or die "Cannot write $pool_dir/TOC: $!\n"; | ||
700 : | |||
701 : | print $toc "$num ", time(), " New toc entry\n"; | ||
702 : | close($toc); | ||
703 : | |||
704 : | olson | 1.123 | my $cpool_id = sprintf "%04d", $num; |
705 : | my $cpool_dir = "$pool_dir/$cpool_id"; | ||
706 : | olson | 1.93 | |
707 : | # | ||
708 : | # All set, create the directory for this pool. | ||
709 : | # | ||
710 : | |||
711 : | &verify_dir($cpool_dir); | ||
712 : | |||
713 : | # | ||
714 : | # Now we can copy the nr and sim queue here. | ||
715 : | # Do this stuff inside an eval so we can clean up | ||
716 : | # the lockfile. | ||
717 : | # | ||
718 : | |||
719 : | eval { | ||
720 : | parrello | 1.287 | my $sim_q = "$FIG_Config::global/queued_similarities"; |
721 : | olson | 1.93 | |
722 : | parrello | 1.287 | copy("$sim_q", "$cpool_dir/q"); |
723 : | copy("$FIG_Config::data/Global/nr", "$cpool_dir/nr"); | ||
724 : | olson | 1.93 | |
725 : | parrello | 1.287 | open(F, ">$sim_q") or die "Cannot open $sim_q to truncate it: $!\n"; |
726 : | close(F); | ||
727 : | olson | 1.93 | }; |
728 : | parrello | 1.200 | |
729 : | olson | 1.93 | unlink("$pool_dir/lockfile"); |
730 : | close($lock); | ||
731 : | olson | 1.123 | |
732 : | # | ||
733 : | # We've created our pool; we can now run the formatdb and | ||
734 : | # extract the sequences for the blast run. | ||
735 : | # | ||
736 : | parrello | 1.287 | my $child_pid = $self->run_in_background( |
737 : | sub { | ||
738 : | # | ||
739 : | # Need to close db or there's all sorts of trouble. | ||
740 : | # | ||
741 : | |||
742 : | my $cmd = "$FIG_Config::ext_bin/formatdb -i $cpool_dir/nr -p T -l $cpool_dir/formatdb.log"; | ||
743 : | print "Will run '$cmd'\n"; | ||
744 : | &run($cmd); | ||
745 : | print "finished. Logfile:\n"; | ||
746 : | print &FIG::file_read("$cpool_dir/formatdb.log"); | ||
747 : | unlink("$cpool_dir/formatdb.pid"); | ||
748 : | }); | ||
749 : | olson | 1.279 | warn "Running formatdb in background job $child_pid\n"; |
750 : | olson | 1.123 | open(FPID, ">$cpool_dir/formatdb.pid"); |
751 : | print FPID "$child_pid\n"; | ||
752 : | close(FPID); | ||
753 : | |||
754 : | my $db = $self->db_handle(); | ||
755 : | parrello | 1.287 | if (!$db->table_exists("sim_queue")) { |
756 : | $db->create_table(tbl => "sim_queue", | ||
757 : | flds => "qid varchar(32), chunk_id INTEGER, seek INTEGER, len INTEGER, " . | ||
758 : | "assigned BOOL, finished BOOL, output_file varchar(255), " . | ||
759 : | "assignment_expires INTEGER, worker_info varchar(255)" | ||
760 : | ); | ||
761 : | olson | 1.123 | } |
762 : | |||
763 : | # | ||
764 : | # Write the fasta input file. Keep track of how many have been written, | ||
765 : | # and write seek info into the database as appropriate. | ||
766 : | # | ||
767 : | |||
768 : | open(my $seq_fh, ">$cpool_dir/fasta.in"); | ||
769 : | |||
770 : | my($chunk_idx, $chunk_begin, $seq_idx); | ||
771 : | |||
772 : | olson | 1.279 | my $cur_size = 0; |
773 : | |||
774 : | olson | 1.123 | $chunk_idx = 0; |
775 : | $chunk_begin = 0; | ||
776 : | $seq_idx = 0; | ||
777 : | |||
778 : | my(@seeks); | ||
779 : | |||
780 : | olson | 1.279 | my $tmpfile = "$FIG_Config::temp/simseek.$$"; |
781 : | open(my $tmpfh, ">$tmpfile") or confess "Cannot open tmpfile $tmpfile: $!"; | ||
782 : | |||
783 : | olson | 1.123 | open(my $q_fh, "<$cpool_dir/q"); |
784 : | parrello | 1.287 | while (my $id = <$q_fh>) { |
785 : | chomp $id; | ||
786 : | olson | 1.123 | |
787 : | parrello | 1.287 | my $seq = $self->get_translation($id); |
788 : | olson | 1.123 | |
789 : | parrello | 1.287 | # |
790 : | # check if we're at the beginning of a chunk | ||
791 : | # | ||
792 : | |||
793 : | print $seq_fh ">$id\n$seq\n"; | ||
794 : | |||
795 : | # | ||
796 : | # Check if we're at the end of a chunk | ||
797 : | # | ||
798 : | |||
799 : | $cur_size += length($seq); | ||
800 : | if ($cur_size >= $chunk_size) { | ||
801 : | my $chunk_end = tell($seq_fh); | ||
802 : | my $chunk_len = $chunk_end - $chunk_begin; | ||
803 : | |||
804 : | push(@seeks, [$cpool_id, $chunk_idx, $chunk_begin, $chunk_len]); | ||
805 : | print $tmpfh join("\t", $cpool_id, $chunk_idx, $chunk_begin, $chunk_len, 'FALSE', 'FALSE'), "\n"; | ||
806 : | $chunk_idx++; | ||
807 : | $chunk_begin = $chunk_end; | ||
808 : | $cur_size = 0; | ||
809 : | } | ||
810 : | $seq_idx++; | ||
811 : | olson | 1.123 | } |
812 : | |||
813 : | parrello | 1.287 | if ($cur_size > 0) { |
814 : | my $chunk_end = tell($seq_fh); | ||
815 : | my $chunk_len = $chunk_end - $chunk_begin; | ||
816 : | olson | 1.123 | |
817 : | parrello | 1.287 | print $tmpfh join("\t", $cpool_id, $chunk_idx, $chunk_begin, $chunk_len, 'FALSE', 'FALSE'), "\n"; |
818 : | push(@seeks, [$cpool_id, $chunk_idx, $chunk_begin, $chunk_len]); | ||
819 : | olson | 1.123 | } |
820 : | |||
821 : | close($q_fh); | ||
822 : | close($seq_fh); | ||
823 : | olson | 1.279 | close($tmpfh); |
824 : | olson | 1.123 | |
825 : | olson | 1.279 | warn "Write seqs from $tmpfile\n"; |
826 : | olson | 1.123 | |
827 : | olson | 1.279 | $self->db_handle->load_table(tbl => 'sim_queue', |
828 : | parrello | 1.298 | file => $tmpfile); |
829 : | parrello | 1.200 | |
830 : | olson | 1.279 | unlink($tmpfile); |
831 : | parrello | 1.287 | |
832 : | olson | 1.279 | # for my $seek (@seeks) |
833 : | # { | ||
834 : | parrello | 1.298 | # my($cpool_id, $chunk_idx, $chunk_begin, $chunk_len) = @$seek; |
835 : | olson | 1.279 | |
836 : | parrello | 1.298 | # $db->SQL("insert into sim_queue (qid, chunk_id, seek, len, assigned, finished) " . |
837 : | # "values('$cpool_id', $chunk_idx, $chunk_begin, $chunk_len, FALSE, FALSE)"); | ||
838 : | olson | 1.279 | # } |
839 : | parrello | 1.200 | |
840 : | olson | 1.123 | return $cpool_id; |
841 : | } | ||
842 : | |||
843 : | parrello | 1.210 | #=head3 get_sim_queue |
844 : | # | ||
845 : | #usage: get_sim_queue($pool_id, $all_sims) | ||
846 : | # | ||
847 : | #Returns the sims in the given pool. If $all_sims is true, return the entire queue. Otherwise, | ||
848 : | #just return the sims awaiting processing. | ||
849 : | # | ||
850 : | #=cut | ||
851 : | olson | 1.123 | |
852 : | parrello | 1.287 | sub get_sim_queue { |
853 : | olson | 1.123 | my($self, $pool_id, $all_sims) = @_; |
854 : | olson | 1.279 | } |
855 : | |||
856 : | parrello | 1.287 | =head3 get_sim_work |
857 : | olson | 1.279 | |
858 : | parrello | 1.287 | C<< my ($nrPath, $fasta) = $fig->get_sim_work(); >> |
859 : | olson | 1.279 | |
860 : | Get the next piece of sim computation work to be performed. Returned are | ||
861 : | the path to the NR and a string containing the fasta data. | ||
862 : | |||
863 : | =cut | ||
864 : | |||
865 : | parrello | 1.287 | sub get_sim_work { |
866 : | |||
867 : | my ($self) = @_; | ||
868 : | olson | 1.279 | |
869 : | # | ||
870 : | # For now, just don't care about order of data that we get back. | ||
871 : | # | ||
872 : | |||
873 : | my $db = $self->db_handle(); | ||
874 : | my $lock = FIG::SimLock->new; | ||
875 : | |||
876 : | my $work = $db->SQL(qq(SELECT qid, chunk_id, seek, len | ||
877 : | parrello | 1.298 | FROM sim_queue |
878 : | WHERE not finished | ||
879 : | LIMIT 1)); | ||
880 : | olson | 1.279 | print "Got work ", Dumper($work), "\n"; |
881 : | |||
882 : | parrello | 1.287 | if (not $work or @$work == 0) { |
883 : | return undef; | ||
884 : | olson | 1.279 | } |
885 : | |||
886 : | my($cpool_id, $chunk_id, $seek, $len) = @{$work->[0]}; | ||
887 : | parrello | 1.287 | |
888 : | olson | 1.279 | my $pool_dir = "$FIG_Config::fig/var/sim_pools"; |
889 : | my $cpool_dir = "$pool_dir/$cpool_id"; | ||
890 : | |||
891 : | my $nr = "$cpool_dir/nr"; | ||
892 : | open(my $fh, "<$cpool_dir/fasta.in"); | ||
893 : | seek($fh, $seek, 0); | ||
894 : | my $fasta; | ||
895 : | read($fh, $fasta, $len); | ||
896 : | |||
897 : | return($cpool_id, $chunk_id, $nr, $fasta, "$cpool_dir/out.$chunk_id"); | ||
898 : | } | ||
899 : | |||
900 : | =head3 sim_work_done | ||
901 : | |||
902 : | parrello | 1.287 | C<< $fig->sim_work_done($pool_id, $chunk_id, $out_file); >> |
903 : | |||
904 : | olson | 1.279 | Declare that the work in pool_id/chunk_id has been completed, and output written |
905 : | to the pool directory (get_sim_work gave it the path). | ||
906 : | |||
907 : | parrello | 1.287 | =over 4 |
908 : | |||
909 : | =item pool_id | ||
910 : | |||
911 : | The ID number of the pool containing the work that just completed. | ||
912 : | |||
913 : | =item chunk_id | ||
914 : | |||
915 : | The ID number of the chunk completed. | ||
916 : | |||
917 : | =item out_file | ||
918 : | |||
919 : | The file into which the work was placed. | ||
920 : | |||
921 : | =back | ||
922 : | |||
923 : | olson | 1.279 | =cut |
924 : | |||
925 : | parrello | 1.287 | sub sim_work_done { |
926 : | my ($self, $pool_id, $chunk_id, $out_file) = @_; | ||
927 : | olson | 1.279 | |
928 : | parrello | 1.287 | if (! -f $out_file) { |
929 : | Confess("sim_work_done: output file $out_file does not exist"); | ||
930 : | olson | 1.279 | } |
931 : | |||
932 : | my $db = $self->db_handle(); | ||
933 : | my $lock = FIG::SimLock->new; | ||
934 : | |||
935 : | my $dbh = $db->{_dbh}; | ||
936 : | |||
937 : | my $rows = $dbh->do(qq(UPDATE sim_queue | ||
938 : | parrello | 1.298 | SET finished = TRUE, output_file = ? |
939 : | WHERE qid = ? and chunk_id = ?), undef, $out_file, $pool_id, $chunk_id); | ||
940 : | parrello | 1.287 | if ($rows != 1) { |
941 : | if ($dbh->errstr) { | ||
942 : | Confess("Update not able to set finished=TRUE: ", $dbh->errstr); | ||
943 : | } else { | ||
944 : | Confess("Update not able to set finished=TRUE"); | ||
945 : | } | ||
946 : | olson | 1.279 | } |
947 : | # | ||
948 : | # Determine if this was the last piece of work for this pool. If so, we can | ||
949 : | parrello | 1.287 | # schedule the postprocessing work. |
950 : | olson | 1.279 | # |
951 : | # Note we're still holding the lock. | ||
952 : | # | ||
953 : | |||
954 : | my $out = $db->SQL(qq(SELECT chunk_id | ||
955 : | parrello | 1.298 | FROM sim_queue |
956 : | WHERE qid = ? AND not finished), undef, $pool_id); | ||
957 : | parrello | 1.287 | if (@$out == 0) { |
958 : | # | ||
959 : | # Pool is done. | ||
960 : | # | ||
961 : | $self->schedule_sim_pool_postprocessing($pool_id); | ||
962 : | olson | 1.279 | } |
963 : | olson | 1.123 | } |
964 : | |||
965 : | olson | 1.279 | =head3 schedule_sim_pool_postprocessing |
966 : | |||
967 : | parrello | 1.287 | C<< $fig->schedule_sim_pool_postprocessing($pool_id); >> |
968 : | |||
969 : | Schedule a job to do the similarity postprocessing for the specified pool. | ||
970 : | |||
971 : | =over 4 | ||
972 : | |||
973 : | =item pool_id | ||
974 : | |||
975 : | ID of the pool whose similarity postprocessing needs to be scheduled. | ||
976 : | olson | 1.279 | |
977 : | parrello | 1.287 | =back |
978 : | olson | 1.279 | |
979 : | =cut | ||
980 : | |||
981 : | parrello | 1.287 | sub schedule_sim_pool_postprocessing { |
982 : | |||
983 : | olson | 1.279 | my($self, $pool_id) = @_; |
984 : | |||
985 : | my $pool_dir = "$FIG_Config::fig/var/sim_pools"; | ||
986 : | my $cpool_dir = "$pool_dir/$pool_id"; | ||
987 : | |||
988 : | my $js = JobScheduler->new(); | ||
989 : | my $job = $js->job_create(); | ||
990 : | |||
991 : | my $spath = $job->get_script_path(); | ||
992 : | open(my $sfh, ">$spath"); | ||
993 : | print $sfh <<END; | ||
994 : | #!/bin/sh | ||
995 : | . $FIG_Config::fig_disk/config/fig-user-env.sh | ||
996 : | $FIG_Config::bin/postprocess_computed_sims $pool_id | ||
997 : | END | ||
998 : | |||
999 : | close($sfh); | ||
1000 : | chmod(0775, $spath); | ||
1001 : | |||
1002 : | # | ||
1003 : | # Write the job ID to the subsystem queue dir. | ||
1004 : | # | ||
1005 : | |||
1006 : | open(J, ">$cpool_dir/postprocess_jobid"); | ||
1007 : | print J $job->get_id(), "\n"; | ||
1008 : | close(J); | ||
1009 : | |||
1010 : | $job->enqueue(); | ||
1011 : | } | ||
1012 : | |||
1013 : | =head3 postprocess_computed_sims | ||
1014 : | |||
1015 : | parrello | 1.287 | C<< $fig->postprocess_computed_sims($pool_id); >> |
1016 : | |||
1017 : | Set up to reduce, reformat, and split the similarities in a given pool. We build | ||
1018 : | a pipe to this pipeline: | ||
1019 : | olson | 1.279 | |
1020 : | reduce_sims peg.synonyms 300 | reformat_sims nr | split_sims dest prefix | ||
1021 : | |||
1022 : | parrello | 1.287 | Then we put the new sims in the pool directory, and then copy to NewSims. |
1023 : | |||
1024 : | =over 4 | ||
1025 : | |||
1026 : | =item pool_id | ||
1027 : | |||
1028 : | ID of the pool whose similarities are to be post-processed. | ||
1029 : | |||
1030 : | =back | ||
1031 : | olson | 1.279 | |
1032 : | =cut | ||
1033 : | |||
1034 : | parrello | 1.287 | sub postprocess_computed_sims { |
1035 : | olson | 1.279 | my($self, $pool_id) = @_; |
1036 : | |||
1037 : | # | ||
1038 : | # We don't lock here because the job is already done, and we | ||
1039 : | # shouldn't (ha, ha) ever postprocess twice. | ||
1040 : | # | ||
1041 : | |||
1042 : | my $pool_dir = "$FIG_Config::fig/var/sim_pools"; | ||
1043 : | my $cpool_dir = "$pool_dir/$pool_id"; | ||
1044 : | |||
1045 : | my $sim_dir = "$cpool_dir/NewSims"; | ||
1046 : | &verify_dir($sim_dir); | ||
1047 : | |||
1048 : | # | ||
1049 : | # Open the processing pipeline. | ||
1050 : | # | ||
1051 : | |||
1052 : | my $reduce = "$FIG_Config::bin/reduce_sims $FIG_Config::global/peg.synonyms 300"; | ||
1053 : | my $reformat = "$FIG_Config::bin/reformat_sims $cpool_dir/nr"; | ||
1054 : | my $split = "$FIG_Config::bin/split_sims $sim_dir sims.$pool_id"; | ||
1055 : | open(my $process, "| $reduce | $reformat | $split"); | ||
1056 : | |||
1057 : | # | ||
1058 : | # Iterate over all the sims files, taken from the database. | ||
1059 : | # | ||
1060 : | |||
1061 : | my $dbh = $self->db_handle()->{_dbh}; | ||
1062 : | my $files = $dbh->selectcol_arrayref(qq(SELECT output_file | ||
1063 : | parrello | 1.298 | FROM sim_queue |
1064 : | WHERE qid = ? and output_file IS NOT NULL | ||
1065 : | ORDER BY chunk_id), undef, $pool_id); | ||
1066 : | parrello | 1.287 | for my $file (@$files) { |
1067 : | my $buf; | ||
1068 : | open(my $fh, "<$file") or confess "Cannot sim input file $file: $!"; | ||
1069 : | while (read($fh, $buf, 4096)) { | ||
1070 : | print $process $buf; | ||
1071 : | } | ||
1072 : | close($fh); | ||
1073 : | olson | 1.279 | } |
1074 : | my $res = close($process); | ||
1075 : | parrello | 1.287 | if (!$res) { |
1076 : | if ($!) { | ||
1077 : | confess "Error closing process pipeline: $!"; | ||
1078 : | } else { | ||
1079 : | confess "Process pipeline exited with status $?"; | ||
1080 : | } | ||
1081 : | olson | 1.279 | } |
1082 : | |||
1083 : | # | ||
1084 : | # If we got here, it worked. Copy the new sims files over to NewSims. | ||
1085 : | # | ||
1086 : | |||
1087 : | opendir(my $simdh, $sim_dir) or confess "Cannot open $sim_dir: $!"; | ||
1088 : | my @new_sims = grep { $_ !~ /^\./ } readdir($simdh); | ||
1089 : | closedir($simdh); | ||
1090 : | |||
1091 : | &verify_dir("$FIG_Config::data/NewSims"); | ||
1092 : | |||
1093 : | parrello | 1.287 | for my $sim_file (@new_sims) { |
1094 : | my $target = "$FIG_Config::data/NewSims/$sim_file"; | ||
1095 : | if (-s $target) { | ||
1096 : | Confess("$target already exists"); | ||
1097 : | } | ||
1098 : | print "copying sim file $sim_file\n"; | ||
1099 : | &FIG::run("cp $sim_dir/$sim_file $target"); | ||
1100 : | &FIG::run("$FIG_Config::bin/index_sims $target"); | ||
1101 : | olson | 1.279 | } |
1102 : | } | ||
1103 : | |||
1104 : | parrello | 1.210 | =head3 get_active_sim_pools |
1105 : | olson | 1.123 | |
1106 : | parrello | 1.287 | C<< @pools = $fig->get_active_sim_pools(); >> |
1107 : | olson | 1.123 | |
1108 : | parrello | 1.287 | Return a list of the pool IDs for the sim processing queues that have |
1109 : | entries awaiting computation. | ||
1110 : | olson | 1.123 | |
1111 : | =cut | ||
1112 : | parrello | 1.210 | #: Return Type @; |
1113 : | parrello | 1.287 | sub get_active_sim_pools { |
1114 : | olson | 1.123 | my($self) = @_; |
1115 : | |||
1116 : | my $dbh = $self->db_handle(); | ||
1117 : | |||
1118 : | my $res = $dbh->SQL("select distinct qid from sim_queue where not finished"); | ||
1119 : | return undef unless $res; | ||
1120 : | |||
1121 : | return map { $_->[0] } @$res; | ||
1122 : | } | ||
1123 : | |||
1124 : | parrello | 1.210 | =head3 get_sim_pool_info |
1125 : | olson | 1.123 | |
1126 : | parrello | 1.287 | C<< my ($total_entries, $n_finished, $n_assigned, $n_unassigned) = $fig->get_sim_pool_info($pool_id); >> |
1127 : | |||
1128 : | Return information about the given sim pool. | ||
1129 : | |||
1130 : | =over 4 | ||
1131 : | |||
1132 : | =item pool_id | ||
1133 : | |||
1134 : | Pool ID of the similarity processing queue whose information is desired. | ||
1135 : | |||
1136 : | =item RETURN | ||
1137 : | |||
1138 : | Returns a four-element list. The first is the number of features in the | ||
1139 : | queue; the second is the number of features that have been processed; the | ||
1140 : | third is the number of features that have been assigned to a | ||
1141 : | processor, and the fourth is the number of features left over. | ||
1142 : | olson | 1.123 | |
1143 : | parrello | 1.287 | =back |
1144 : | olson | 1.123 | |
1145 : | =cut | ||
1146 : | parrello | 1.210 | #: Return Type @; |
1147 : | parrello | 1.287 | sub get_sim_pool_info { |
1148 : | |||
1149 : | olson | 1.123 | my($self, $pool_id) = @_; |
1150 : | my($dbh, $res, $total_entries, $n_finished, $n_assigned, $n_unassigned); | ||
1151 : | |||
1152 : | $dbh = $self->db_handle(); | ||
1153 : | |||
1154 : | $res = $dbh->SQL("select count(chunk_id) from sim_queue where qid = '$pool_id'"); | ||
1155 : | parrello | 1.200 | $total_entries = $res->[0]->[0]; |
1156 : | olson | 1.123 | |
1157 : | $res = $dbh->SQL("select count(chunk_id) from sim_queue where qid = '$pool_id' and finished"); | ||
1158 : | $n_finished = $res->[0]->[0]; | ||
1159 : | |||
1160 : | $res = $dbh->SQL("select count(chunk_id) from sim_queue where qid = '$pool_id' and assigned and not finished"); | ||
1161 : | $n_assigned = $res->[0]->[0]; | ||
1162 : | |||
1163 : | $res = $dbh->SQL("select count(chunk_id) from sim_queue where qid = '$pool_id' and not finished and not assigned"); | ||
1164 : | $n_unassigned = $res->[0]->[0]; | ||
1165 : | |||
1166 : | return ($total_entries, $n_finished, $n_assigned, $n_unassigned); | ||
1167 : | olson | 1.93 | } |
1168 : | |||
1169 : | parrello | 1.210 | #=head3 get_sim_chunk |
1170 : | # | ||
1171 : | #usage: get_sim_chunk($n_seqs, $worker_id) | ||
1172 : | # | ||
1173 : | #Returns a chunk of $n_seqs of work. | ||
1174 : | # | ||
1175 : | #From Ross, about how sims are processed: | ||
1176 : | # | ||
1177 : | #Here is how I process them: | ||
1178 : | # | ||
1179 : | # | ||
1180 : | # bash$ cd /Volumes/seed/olson/Sims/June22.out | ||
1181 : | # bash$ for i in really* | ||
1182 : | # > do | ||
1183 : | # > cat < $i >> /Volumes/laptop/new.sims | ||
1184 : | # > done | ||
1185 : | # | ||
1186 : | # | ||
1187 : | #Then, I need to "reformat" them by adding to columns to each one | ||
1188 : | # and split the result into files of about 3M each This I do using | ||
1189 : | # | ||
1190 : | #reduce_sims /Volumes/laptop/NR/NewNR/peg.synonyms.june21 300 < /Volumes/laptop/new.sims | | ||
1191 : | # reformat_sims /Volumes/laptop/NR/NewNR/checked.nr.june21 > /Volumes/laptop/reformated.sims | ||
1192 : | #rm /Volumes/laptop/new.sims | ||
1193 : | #split_sims /Volumes/laptop/NewSims sims.june24 reformated.sims | ||
1194 : | #rm reformatted.sims | ||
1195 : | # | ||
1196 : | #=cut | ||
1197 : | olson | 1.93 | |
1198 : | parrello | 1.287 | sub get_sim_chunk { |
1199 : | parrello | 1.210 | my($self, $n_seqs, $worker_id) = @_; |
1200 : | } | ||
1201 : | olson | 1.123 | |
1202 : | parrello | 1.210 | =head3 get_local_hostname |
1203 : | parrello | 1.200 | |
1204 : | parrello | 1.287 | C<< my $result = FIG::get_local_hostname(); >> |
1205 : | |||
1206 : | Return the local host name for the current processor. The name may be | ||
1207 : | stored in a configuration file, or we may have to get it from the | ||
1208 : | operating system. | ||
1209 : | olson | 1.123 | |
1210 : | olson | 1.93 | =cut |
1211 : | parrello | 1.213 | #: Return Type $; |
1212 : | olson | 1.10 | sub get_local_hostname { |
1213 : | olson | 1.52 | |
1214 : | # | ||
1215 : | # See if there is a FIGdisk/config/hostname file. If there | ||
1216 : | # is, force the hostname to be that. | ||
1217 : | # | ||
1218 : | |||
1219 : | my $hostfile = "$FIG_Config::fig_disk/config/hostname"; | ||
1220 : | parrello | 1.287 | if (-f $hostfile) { |
1221 : | my $fh; | ||
1222 : | if (open($fh, $hostfile)) { | ||
1223 : | my $hostname = <$fh>; | ||
1224 : | chomp($hostname); | ||
1225 : | return $hostname; | ||
1226 : | } | ||
1227 : | olson | 1.52 | } |
1228 : | parrello | 1.200 | |
1229 : | olson | 1.10 | # |
1230 : | # First check to see if we our hostname is correct. | ||
1231 : | # | ||
1232 : | # Map it to an IP address, and try to bind to that ip. | ||
1233 : | # | ||
1234 : | |||
1235 : | my $tcp = getprotobyname('tcp'); | ||
1236 : | parrello | 1.200 | |
1237 : | olson | 1.10 | my $hostname = `hostname`; |
1238 : | golsen | 1.44 | chomp($hostname); |
1239 : | olson | 1.10 | |
1240 : | my @hostent = gethostbyname($hostname); | ||
1241 : | |||
1242 : | parrello | 1.287 | if (@hostent > 0) { |
1243 : | my $sock; | ||
1244 : | my $ip = $hostent[4]; | ||
1245 : | |||
1246 : | socket($sock, PF_INET, SOCK_STREAM, $tcp); | ||
1247 : | if (bind($sock, sockaddr_in(0, $ip))) { | ||
1248 : | # | ||
1249 : | # It worked. Reverse-map back to a hopefully fqdn. | ||
1250 : | # | ||
1251 : | |||
1252 : | my @rev = gethostbyaddr($ip, AF_INET); | ||
1253 : | if (@rev > 0) { | ||
1254 : | my $host = $rev[0]; | ||
1255 : | # | ||
1256 : | # Check to see if we have a FQDN. | ||
1257 : | # | ||
1258 : | |||
1259 : | if ($host =~ /\./) { | ||
1260 : | # | ||
1261 : | # Good. | ||
1262 : | # | ||
1263 : | return $host; | ||
1264 : | } else { | ||
1265 : | # | ||
1266 : | # We didn't get a fqdn; bail and return the IP address. | ||
1267 : | # | ||
1268 : | return get_hostname_by_adapter() | ||
1269 : | } | ||
1270 : | } else { | ||
1271 : | return inet_ntoa($ip); | ||
1272 : | } | ||
1273 : | } else { | ||
1274 : | # | ||
1275 : | # Our hostname must be wrong; we can't bind to the IP | ||
1276 : | # address it maps to. | ||
1277 : | # Return the name associated with the adapter. | ||
1278 : | # | ||
1279 : | return get_hostname_by_adapter() | ||
1280 : | } | ||
1281 : | } else { | ||
1282 : | # | ||
1283 : | # Our hostname isn't known to DNS. This isn't good. | ||
1284 : | # Return the name associated with the adapter. | ||
1285 : | # | ||
1286 : | return get_hostname_by_adapter() | ||
1287 : | } | ||
1288 : | } | ||
1289 : | |||
1290 : | =head3 get_hostname_by_adapter | ||
1291 : | parrello | 1.200 | |
1292 : | parrello | 1.287 | C<< my $name = FIG::get_hostname_by_adapter(); >> |
1293 : | olson | 1.10 | |
1294 : | parrello | 1.287 | Return the local host name for the current network environment. |
1295 : | parrello | 1.213 | |
1296 : | =cut | ||
1297 : | #: Return Type $; | ||
1298 : | olson | 1.10 | sub get_hostname_by_adapter { |
1299 : | # | ||
1300 : | # Attempt to determine our local hostname based on the | ||
1301 : | # network environment. | ||
1302 : | # | ||
1303 : | # This implementation reads the routing table for the default route. | ||
1304 : | # We then look at the interface config for the interface that holds the default. | ||
1305 : | # | ||
1306 : | # | ||
1307 : | # Linux routing table: | ||
1308 : | # [olson@yips 0.0.0]$ netstat -rn | ||
1309 : | # Kernel IP routing table | ||
1310 : | # Destination Gateway Genmask Flags MSS Window irtt Iface | ||
1311 : | # 140.221.34.32 0.0.0.0 255.255.255.224 U 0 0 0 eth0 | ||
1312 : | # 169.254.0.0 0.0.0.0 255.255.0.0 U 0 0 0 eth0 | ||
1313 : | # 127.0.0.0 0.0.0.0 255.0.0.0 U 0 0 0 lo | ||
1314 : | # 0.0.0.0 140.221.34.61 0.0.0.0 UG 0 0 0 eth0 | ||
1315 : | parrello | 1.200 | # |
1316 : | olson | 1.10 | # Mac routing table: |
1317 : | parrello | 1.200 | # |
1318 : | olson | 1.10 | # bash-2.05a$ netstat -rn |
1319 : | # Routing tables | ||
1320 : | parrello | 1.200 | # |
1321 : | olson | 1.10 | # Internet: |
1322 : | # Destination Gateway Flags Refs Use Netif Expire | ||
1323 : | # default 140.221.11.253 UGSc 12 120 en0 | ||
1324 : | # 127.0.0.1 127.0.0.1 UH 16 8415486 lo0 | ||
1325 : | # 140.221.8/22 link#4 UCS 12 0 en0 | ||
1326 : | # 140.221.8.78 0:6:5b:f:51:c4 UHLW 0 183 en0 408 | ||
1327 : | # 140.221.8.191 0:3:93:84:ab:e8 UHLW 0 92 en0 622 | ||
1328 : | # 140.221.8.198 0:e0:98:8e:36:e2 UHLW 0 5 en0 691 | ||
1329 : | # 140.221.9.6 0:6:5b:f:51:d6 UHLW 1 63 en0 1197 | ||
1330 : | # 140.221.10.135 0:d0:59:34:26:34 UHLW 2 2134 en0 1199 | ||
1331 : | # 140.221.10.152 0:30:1b:b0:ec:dd UHLW 1 137 en0 1122 | ||
1332 : | # 140.221.10.153 127.0.0.1 UHS 0 0 lo0 | ||
1333 : | # 140.221.11.37 0:9:6b:53:4e:4b UHLW 1 624 en0 1136 | ||
1334 : | # 140.221.11.103 0:30:48:22:59:e6 UHLW 3 973 en0 1016 | ||
1335 : | # 140.221.11.224 0:a:95:6f:7:10 UHLW 1 1 en0 605 | ||
1336 : | # 140.221.11.237 0:1:30:b8:80:c0 UHLW 0 0 en0 1158 | ||
1337 : | # 140.221.11.250 0:1:30:3:1:0 UHLW 0 0 en0 1141 | ||
1338 : | # 140.221.11.253 0:d0:3:e:70:a UHLW 13 0 en0 1199 | ||
1339 : | # 169.254 link#4 UCS 0 0 en0 | ||
1340 : | parrello | 1.200 | # |
1341 : | olson | 1.10 | # Internet6: |
1342 : | # Destination Gateway Flags Netif Expire | ||
1343 : | # UH lo0 | ||
1344 : | # fe80::%lo0/64 Uc lo0 | ||
1345 : | # link#1 UHL lo0 | ||
1346 : | # fe80::%en0/64 link#4 UC en0 | ||
1347 : | # 0:a:95:a8:26:68 UHL lo0 | ||
1348 : | # ff01::/32 U lo0 | ||
1349 : | # ff02::%lo0/32 UC lo0 | ||
1350 : | # ff02::%en0/32 link#4 UC en0 | ||
1351 : | |||
1352 : | my($fh); | ||
1353 : | |||
1354 : | parrello | 1.287 | if (!open($fh, "netstat -rn |")) { |
1355 : | warn "Cannot run netstat to determine local IP address\n"; | ||
1356 : | return "localhost"; | ||
1357 : | olson | 1.10 | } |
1358 : | |||
1359 : | my $interface_name; | ||
1360 : | parrello | 1.200 | |
1361 : | parrello | 1.287 | while (<$fh>) { |
1362 : | my @cols = split(); | ||
1363 : | olson | 1.10 | |
1364 : | parrello | 1.287 | if ($cols[0] eq "default" || $cols[0] eq "0.0.0.0") { |
1365 : | $interface_name = $cols[$#cols]; | ||
1366 : | } | ||
1367 : | olson | 1.10 | } |
1368 : | close($fh); | ||
1369 : | parrello | 1.200 | |
1370 : | olson | 1.11 | # print "Default route on $interface_name\n"; |
1371 : | olson | 1.10 | |
1372 : | # | ||
1373 : | # Find ifconfig. | ||
1374 : | # | ||
1375 : | |||
1376 : | my $ifconfig; | ||
1377 : | |||
1378 : | parrello | 1.287 | for my $dir ((split(":", $ENV{PATH}), "/sbin", "/usr/sbin")) { |
1379 : | if (-x "$dir/ifconfig") { | ||
1380 : | $ifconfig = "$dir/ifconfig"; | ||
1381 : | last; | ||
1382 : | } | ||
1383 : | olson | 1.10 | } |
1384 : | |||
1385 : | parrello | 1.287 | if ($ifconfig eq "") { |
1386 : | warn "Ifconfig not found\n"; | ||
1387 : | return "localhost"; | ||
1388 : | olson | 1.10 | } |
1389 : | olson | 1.11 | # print "Foudn $ifconfig\n"; |
1390 : | olson | 1.10 | |
1391 : | parrello | 1.287 | if (!open($fh, "$ifconfig $interface_name |")) { |
1392 : | warn "Could not run $ifconfig: $!\n"; | ||
1393 : | return "localhost"; | ||
1394 : | olson | 1.10 | } |
1395 : | |||
1396 : | my $ip; | ||
1397 : | parrello | 1.287 | while (<$fh>) { |
1398 : | # | ||
1399 : | # Mac: | ||
1400 : | # inet 140.221.10.153 netmask 0xfffffc00 broadcast 140.221.11.255 | ||
1401 : | # Linux: | ||
1402 : | # inet addr:140.221.34.37 Bcast:140.221.34.63 Mask:255.255.255.224 | ||
1403 : | # | ||
1404 : | |||
1405 : | chomp; | ||
1406 : | s/^\s*//; | ||
1407 : | |||
1408 : | # print "Have '$_'\n"; | ||
1409 : | if (/inet\s+addr:(\d+\.\d+\.\d+\.\d+)\s+/) { | ||
1410 : | # | ||
1411 : | # Linux hit. | ||
1412 : | # | ||
1413 : | $ip = $1; | ||
1414 : | # print "Got linux $ip\n"; | ||
1415 : | last; | ||
1416 : | } elsif (/inet\s+(\d+\.\d+\.\d+\.\d+)\s+/) { | ||
1417 : | # | ||
1418 : | # Mac hit. | ||
1419 : | # | ||
1420 : | $ip = $1; | ||
1421 : | # print "Got mac $ip\n"; | ||
1422 : | last; | ||
1423 : | } | ||
1424 : | olson | 1.10 | } |
1425 : | close($fh); | ||
1426 : | |||
1427 : | parrello | 1.287 | if ($ip eq "") { |
1428 : | warn "Didn't find an IP\n"; | ||
1429 : | return "localhost"; | ||
1430 : | olson | 1.10 | } |
1431 : | |||
1432 : | return $ip; | ||
1433 : | efrank | 1.1 | } |
1434 : | |||
1435 : | parrello | 1.213 | =head3 get_seed_id |
1436 : | |||
1437 : | parrello | 1.287 | C<< my $id = FIG::get_seed_id(); >> |
1438 : | |||
1439 : | Return the Universally Unique ID for this SEED instance. If one | ||
1440 : | does not exist, it will be created. | ||
1441 : | parrello | 1.213 | |
1442 : | =cut | ||
1443 : | #: Return type $; | ||
1444 : | olson | 1.38 | sub get_seed_id { |
1445 : | # | ||
1446 : | # Retrieve the seed identifer from FIGdisk/config/seed_id. | ||
1447 : | # | ||
1448 : | # If it's not there, create one, and make it readonly. | ||
1449 : | # | ||
1450 : | my $id; | ||
1451 : | my $id_file = "$FIG_Config::fig_disk/config/seed_id"; | ||
1452 : | parrello | 1.287 | if (! -f $id_file) { |
1453 : | my $newid = `uuidgen`; | ||
1454 : | if (!$newid) { | ||
1455 : | die "Cannot run uuidgen: $!"; | ||
1456 : | } | ||
1457 : | olson | 1.38 | |
1458 : | parrello | 1.287 | chomp($newid); |
1459 : | my $fh = new FileHandle(">$id_file"); | ||
1460 : | if (!$fh) { | ||
1461 : | die "error creating $id_file: $!"; | ||
1462 : | } | ||
1463 : | print $fh "$newid\n"; | ||
1464 : | $fh->close(); | ||
1465 : | chmod(0444, $id_file); | ||
1466 : | olson | 1.38 | } |
1467 : | my $fh = new FileHandle("<$id_file"); | ||
1468 : | $id = <$fh>; | ||
1469 : | chomp($id); | ||
1470 : | return $id; | ||
1471 : | } | ||
1472 : | |||
1473 : | parrello | 1.287 | =head3 get_release_info |
1474 : | olson | 1.155 | |
1475 : | parrello | 1.287 | C<< my ($name, $id, $inst, $email, $parent_id, $description) = FIG::get_release_info(); >> |
1476 : | olson | 1.155 | |
1477 : | parrello | 1.287 | Return the current data release information.. |
1478 : | olson | 1.195 | |
1479 : | The release info comes from the file FIG/Data/RELEASE. It is formatted as: | ||
1480 : | |||
1481 : | parrello | 1.287 | <release-name> |
1482 : | <unique id> | ||
1483 : | <institution> | ||
1484 : | <contact email> | ||
1485 : | <unique id of data release this release derived from> | ||
1486 : | <description> | ||
1487 : | olson | 1.195 | |
1488 : | For instance: | ||
1489 : | |||
1490 : | parrello | 1.287 | ----- |
1491 : | SEED Data Release, 09/15/2004. | ||
1492 : | 4148208C-1DF2-11D9-8417-000A95D52EF6 | ||
1493 : | ANL/FIG | ||
1494 : | olson@mcs.anl.gov | ||
1495 : | |||
1496 : | Test release. | ||
1497 : | ----- | ||
1498 : | olson | 1.195 | |
1499 : | If no RELEASE file exists, this routine will create one with a new unique ID. This | ||
1500 : | lets a peer optimize the data transfer by being able to cache ID translations | ||
1501 : | from this instance. | ||
1502 : | olson | 1.155 | |
1503 : | =cut | ||
1504 : | parrello | 1.213 | #: Return Type @; |
1505 : | parrello | 1.287 | sub get_release_info { |
1506 : | olson | 1.196 | my($fig, $no_create) = @_; |
1507 : | olson | 1.195 | |
1508 : | my $rel_file = "$FIG_Config::data/RELEASE"; | ||
1509 : | |||
1510 : | parrello | 1.287 | if (! -f $rel_file and !$no_create) { |
1511 : | parrello | 1.298 | # |
1512 : | # Create a new one. | ||
1513 : | # | ||
1514 : | olson | 1.195 | |
1515 : | parrello | 1.287 | my $newid = `uuidgen`; |
1516 : | if (!$newid) { | ||
1517 : | die "Cannot run uuidgen: $!"; | ||
1518 : | } | ||
1519 : | olson | 1.195 | |
1520 : | parrello | 1.287 | chomp($newid); |
1521 : | olson | 1.195 | |
1522 : | parrello | 1.287 | my $relinfo = "Automatically generated release info " . localtime(); |
1523 : | my $inst = "Unknown"; | ||
1524 : | my $contact = "Unknown"; | ||
1525 : | my $parent = ""; | ||
1526 : | my( $a, $b, $e, $v, $env ) = $fig->genome_counts; | ||
1527 : | my $description = "Automatically generated release info\n"; | ||
1528 : | $description .= "Contains $a archaeal, $b bacterial, $e eukaryal, $v viral and $env environmental genomes.\n"; | ||
1529 : | |||
1530 : | my $fh = new FileHandle(">$rel_file"); | ||
1531 : | if (!$fh) { | ||
1532 : | warn "error creating $rel_file: $!"; | ||
1533 : | return undef; | ||
1534 : | } | ||
1535 : | print $fh "$relinfo\n"; | ||
1536 : | print $fh "$newid\n"; | ||
1537 : | print $fh "$inst\n"; | ||
1538 : | print $fh "$contact\n"; | ||
1539 : | print $fh "$parent\n"; | ||
1540 : | print $fh $description; | ||
1541 : | $fh->close(); | ||
1542 : | chmod(0444, $rel_file); | ||
1543 : | olson | 1.195 | } |
1544 : | |||
1545 : | parrello | 1.287 | if (open(my $fh, $rel_file)) { |
1546 : | my(@lines) = <$fh>; | ||
1547 : | close($fh); | ||
1548 : | parrello | 1.200 | |
1549 : | parrello | 1.287 | chomp(@lines); |
1550 : | parrello | 1.200 | |
1551 : | parrello | 1.287 | my($info, $id, $inst, $contact, $parent, @desc) = @lines; |
1552 : | olson | 1.195 | |
1553 : | parrello | 1.287 | return ($info, $id, $inst, $contact, $parent, join("\n", @desc)); |
1554 : | olson | 1.195 | } |
1555 : | olson | 1.155 | |
1556 : | return undef; | ||
1557 : | } | ||
1558 : | |||
1559 : | parrello | 1.287 | =head3 get_peer_last_update |
1560 : | olson | 1.155 | |
1561 : | parrello | 1.287 | C<< my $date = $fig->get_peer_last_update($peer_id); >> |
1562 : | parrello | 1.213 | |
1563 : | olson | 1.155 | Return the timestamp from the last successful peer-to-peer update with |
1564 : | parrello | 1.287 | the given peer. If the specified peer has made updates, comparing this |
1565 : | timestamp to the timestamp of the updates can tell you whether or not | ||
1566 : | the updates have been integrated into your SEED data store. | ||
1567 : | olson | 1.155 | |
1568 : | We store this information in FIG/Data/Global/Peers/<peer-id>. | ||
1569 : | |||
1570 : | parrello | 1.287 | =over 4 |
1571 : | |||
1572 : | =item peer_id | ||
1573 : | |||
1574 : | Universally Unique ID for the desired peer. | ||
1575 : | |||
1576 : | =item RETURN | ||
1577 : | |||
1578 : | Returns the date/time stamp for the last peer-to-peer updated performed | ||
1579 : | with the identified SEED instance. | ||
1580 : | |||
1581 : | =back | ||
1582 : | |||
1583 : | olson | 1.155 | =cut |
1584 : | parrello | 1.213 | #: Return Type $; |
1585 : | parrello | 1.287 | sub get_peer_last_update { |
1586 : | olson | 1.155 | my($self, $peer_id) = @_; |
1587 : | |||
1588 : | my $dir = "$FIG_Config::data/Global/Peers"; | ||
1589 : | &verify_dir($dir); | ||
1590 : | $dir .= "/$peer_id"; | ||
1591 : | &verify_dir($dir); | ||
1592 : | |||
1593 : | my $update_file = "$dir/last_update"; | ||
1594 : | parrello | 1.287 | if (-f $update_file) { |
1595 : | my $time = file_head($update_file, 1); | ||
1596 : | chomp $time; | ||
1597 : | return $time; | ||
1598 : | } else { | ||
1599 : | return undef; | ||
1600 : | olson | 1.155 | } |
1601 : | } | ||
1602 : | |||
1603 : | parrello | 1.287 | =head3 set_peer_last_update |
1604 : | parrello | 1.213 | |
1605 : | parrello | 1.287 | C<< $fig->set_peer_last_update($peer_id, $time); >> |
1606 : | parrello | 1.213 | |
1607 : | parrello | 1.287 | Manually set the update timestamp for a specified peer. This informs |
1608 : | the SEED that you have all of the assignments and updates from a | ||
1609 : | particular SEED instance as of a certain date. | ||
1610 : | parrello | 1.213 | |
1611 : | =cut | ||
1612 : | #: Return Type ; | ||
1613 : | |||
1614 : | parrello | 1.287 | sub set_peer_last_update { |
1615 : | olson | 1.155 | my($self, $peer_id, $time) = @_; |
1616 : | |||
1617 : | my $dir = "$FIG_Config::data/Global/Peers"; | ||
1618 : | &verify_dir($dir); | ||
1619 : | $dir .= "/$peer_id"; | ||
1620 : | &verify_dir($dir); | ||
1621 : | |||
1622 : | my $update_file = "$dir/last_update"; | ||
1623 : | open(F, ">$update_file"); | ||
1624 : | print F "$time\n"; | ||
1625 : | close(F); | ||
1626 : | } | ||
1627 : | |||
1628 : | redwards | 1.302 | =head3 clean_spaces |
1629 : | |||
1630 : | parrello | 1.320 | Remove any extra spaces from input fields. This will (currently) remove ^\s, \s$, and concatenate multiple spaces into one. |
1631 : | redwards | 1.302 | |
1632 : | my $input=$fig->clean_spaces($cgi->param('input')); | ||
1633 : | |||
1634 : | =cut | ||
1635 : | |||
1636 : | sub clean_spaces | ||
1637 : | { | ||
1638 : | my ($self, $s)=@_; | ||
1639 : | # note at the moment I do not use \s because that recognizes \t and \n too. This should only remove multiple spaces. | ||
1640 : | parrello | 1.320 | $s =~ s/^ +//; |
1641 : | redwards | 1.302 | $s =~ s/ +$//; |
1642 : | $s =~ s/ +/ /g; | ||
1643 : | return $s; | ||
1644 : | } | ||
1645 : | |||
1646 : | |||
1647 : | |||
1648 : | parrello | 1.213 | =head3 cgi_url |
1649 : | |||
1650 : | parrello | 1.287 | C<< my $url = FIG::$fig->cgi_url(); >> |
1651 : | |||
1652 : | Return the URL for the CGI script directory. | ||
1653 : | parrello | 1.213 | |
1654 : | =cut | ||
1655 : | #: Return Type $; | ||
1656 : | efrank | 1.1 | sub cgi_url { |
1657 : | return &plug_url($FIG_Config::cgi_url); | ||
1658 : | } | ||
1659 : | parrello | 1.200 | |
1660 : | parrello | 1.213 | =head3 temp_url |
1661 : | |||
1662 : | parrello | 1.287 | C<< my $url = FIG::temp_url(); >> |
1663 : | |||
1664 : | Return the URL of the temporary file directory. | ||
1665 : | parrello | 1.213 | |
1666 : | =cut | ||
1667 : | #: Return Type $; | ||
1668 : | efrank | 1.1 | sub temp_url { |
1669 : | return &plug_url($FIG_Config::temp_url); | ||
1670 : | } | ||
1671 : | parrello | 1.200 | |
1672 : | parrello | 1.213 | =head3 plug_url |
1673 : | |||
1674 : | parrello | 1.287 | C<< my $url2 = $fig->plug_url($url); >> |
1675 : | |||
1676 : | or | ||
1677 : | |||
1678 : | C<< my $url2 = $fig->plug_url($url); >> | ||
1679 : | |||
1680 : | Change the domain portion of a URL to point to the current domain. This essentially | ||
1681 : | relocates URLs into the current environment. | ||
1682 : | |||
1683 : | =over 4 | ||
1684 : | |||
1685 : | =item url | ||
1686 : | |||
1687 : | URL to relocate. | ||
1688 : | |||
1689 : | =item RETURN | ||
1690 : | |||
1691 : | Returns a new URL with the base portion converted to the current operating host. | ||
1692 : | If the URL does not begin with C<http://>, the URL will be returned unmodified. | ||
1693 : | |||
1694 : | =back | ||
1695 : | parrello | 1.213 | |
1696 : | =cut | ||
1697 : | #: Return Type $; | ||
1698 : | efrank | 1.1 | sub plug_url { |
1699 : | olson | 1.111 | shift if UNIVERSAL::isa($_[0],__PACKAGE__); |
1700 : | efrank | 1.1 | my($url) = @_; |
1701 : | |||
1702 : | golsen | 1.44 | my $name; |
1703 : | |||
1704 : | # Revised by GJO | ||
1705 : | # First try to get url from the current http request | ||
1706 : | |||
1707 : | if ( defined( $ENV{ 'HTTP_HOST' } ) # This is where $cgi->url gets its value | ||
1708 : | && ( $name = $ENV{ 'HTTP_HOST' } ) | ||
1709 : | && ( $url =~ s~^http://[^/]*~http://$name~ ) # ~ is delimiter | ||
1710 : | ) {} | ||
1711 : | |||
1712 : | # Otherwise resort to alternative sources | ||
1713 : | |||
1714 : | elsif ( ( $name = &get_local_hostname ) | ||
1715 : | && ( $url =~ s~^http://[^/]*~http://$name~ ) # ~ is delimiter | ||
1716 : | ) {} | ||
1717 : | |||
1718 : | efrank | 1.1 | return $url; |
1719 : | } | ||
1720 : | |||
1721 : | parrello | 1.213 | =head3 file_read |
1722 : | |||
1723 : | parrello | 1.287 | C<< my $text = $fig->file_read($fileName); >> |
1724 : | |||
1725 : | or | ||
1726 : | |||
1727 : | C<< my @lines = $fig->file_read($fileName); >> | ||
1728 : | |||
1729 : | or | ||
1730 : | |||
1731 : | C<< my $text = FIG::file_read($fileName); >> | ||
1732 : | |||
1733 : | or | ||
1734 : | |||
1735 : | C<< my @lines = FIG::file_read($fileName); >> | ||
1736 : | |||
1737 : | Read an entire file into memory. In a scalar context, the file is returned | ||
1738 : | as a single text string with line delimiters included. In a list context, the | ||
1739 : | file is returned as a list of lines, each line terminated by a line | ||
1740 : | delimiter. (For a method that automatically strips the line delimiters, | ||
1741 : | use C<Tracer::GetFile>.) | ||
1742 : | |||
1743 : | =over 4 | ||
1744 : | |||
1745 : | =item fileName | ||
1746 : | |||
1747 : | Fully-qualified name of the file to read. | ||
1748 : | |||
1749 : | =item RETURN | ||
1750 : | |||
1751 : | In a list context, returns a list of the file lines. In a scalar context, returns | ||
1752 : | a string containing all the lines of the file with delimiters included. | ||
1753 : | parrello | 1.213 | |
1754 : | parrello | 1.287 | =back |
1755 : | parrello | 1.213 | |
1756 : | =cut | ||
1757 : | #: Return Type $; | ||
1758 : | #: Return Type @; | ||
1759 : | parrello | 1.287 | sub file_read { |
1760 : | |||
1761 : | olson | 1.111 | shift if UNIVERSAL::isa($_[0],__PACKAGE__); |
1762 : | parrello | 1.287 | my($fileName) = @_; |
1763 : | return file_head($fileName, '*'); | ||
1764 : | olson | 1.90 | |
1765 : | } | ||
1766 : | |||
1767 : | |||
1768 : | parrello | 1.213 | =head3 file_head |
1769 : | |||
1770 : | parrello | 1.287 | C<< my $text = $fig->file_head($fileName, $count); >> |
1771 : | |||
1772 : | or | ||
1773 : | |||
1774 : | C<< my @lines = $fig->file_head($fileName, $count); >> | ||
1775 : | parrello | 1.213 | |
1776 : | parrello | 1.287 | or |
1777 : | parrello | 1.213 | |
1778 : | parrello | 1.287 | C<< my $text = FIG::file_head($fileName, $count); >> |
1779 : | olson | 1.90 | |
1780 : | parrello | 1.287 | or |
1781 : | olson | 1.90 | |
1782 : | parrello | 1.287 | C<< my @lines = FIG::file_head($fileName, $count); >> |
1783 : | olson | 1.90 | |
1784 : | parrello | 1.287 | Read a portion of a file into memory. In a scalar context, the file portion is |
1785 : | returned as a single text string with line delimiters included. In a list | ||
1786 : | context, the file portion is returned as a list of lines, each line terminated | ||
1787 : | by a line delimiter. | ||
1788 : | olson | 1.155 | |
1789 : | parrello | 1.287 | =over 4 |
1790 : | olson | 1.90 | |
1791 : | parrello | 1.287 | =item fileName |
1792 : | olson | 1.90 | |
1793 : | parrello | 1.287 | Fully-qualified name of the file to read. |
1794 : | efrank | 1.1 | |
1795 : | parrello | 1.287 | =item count (optional) |
1796 : | efrank | 1.1 | |
1797 : | parrello | 1.287 | Number of lines to read from the file. If omitted, C<1> is assumed. If the |
1798 : | non-numeric string C<*> is specified, the entire file will be read. | ||
1799 : | efrank | 1.1 | |
1800 : | parrello | 1.287 | =item RETURN |
1801 : | efrank | 1.1 | |
1802 : | parrello | 1.287 | In a list context, returns a list of the desired file lines. In a scalar context, returns |
1803 : | a string containing the desired lines of the file with delimiters included. | ||
1804 : | efrank | 1.1 | |
1805 : | parrello | 1.287 | =back |
1806 : | efrank | 1.1 | |
1807 : | =cut | ||
1808 : | parrello | 1.287 | #: Return Type $; |
1809 : | #: Return Type @; | ||
1810 : | sub file_head { | ||
1811 : | efrank | 1.1 | |
1812 : | parrello | 1.287 | shift if UNIVERSAL::isa($_[0],__PACKAGE__); |
1813 : | my($file, $count) = @_; | ||
1814 : | efrank | 1.1 | |
1815 : | parrello | 1.287 | my ($n, $allFlag); |
1816 : | if ($count eq '*') { | ||
1817 : | olson | 1.304 | Trace("Full file read for \"$file\".") if T(3); |
1818 : | parrello | 1.287 | $allFlag = 1; |
1819 : | $n = 0; | ||
1820 : | } else { | ||
1821 : | $allFlag = 0; | ||
1822 : | $n = (!$count ? 1 : $count); | ||
1823 : | olson | 1.304 | Trace("Reading $n record(s) from \"$file\".") if T(3); |
1824 : | parrello | 1.287 | } |
1825 : | efrank | 1.1 | |
1826 : | parrello | 1.287 | if (open(my $fh, "<$file")) { |
1827 : | parrello | 1.298 | my(@ret, $i); |
1828 : | parrello | 1.287 | $i = 0; |
1829 : | while (<$fh>) { | ||
1830 : | push(@ret, $_); | ||
1831 : | $i++; | ||
1832 : | last if !$allFlag && $i >= $n; | ||
1833 : | } | ||
1834 : | close($fh); | ||
1835 : | if (wantarray) { | ||
1836 : | return @ret; | ||
1837 : | } else { | ||
1838 : | return join("", @ret); | ||
1839 : | } | ||
1840 : | efrank | 1.1 | } |
1841 : | } | ||
1842 : | |||
1843 : | ################ Basic Routines [ existed since WIT ] ########################## | ||
1844 : | |||
1845 : | parrello | 1.287 | =head3 min |
1846 : | |||
1847 : | C<< my $min = FIG::min(@x); >> | ||
1848 : | |||
1849 : | or | ||
1850 : | |||
1851 : | C<< my $min = $fig->min(@x); >> | ||
1852 : | |||
1853 : | Return the minimum numeric value from a list. | ||
1854 : | |||
1855 : | =over 4 | ||
1856 : | |||
1857 : | =item x1, x2, ... xN | ||
1858 : | efrank | 1.1 | |
1859 : | parrello | 1.287 | List of numbers to process. |
1860 : | efrank | 1.1 | |
1861 : | parrello | 1.287 | =item RETURN |
1862 : | efrank | 1.1 | |
1863 : | parrello | 1.287 | Returns the numeric value of the list entry possessing the lowest value. Returns |
1864 : | C<undef> if the list is empty. | ||
1865 : | efrank | 1.1 | |
1866 : | parrello | 1.287 | =back |
1867 : | efrank | 1.1 | |
1868 : | =cut | ||
1869 : | parrello | 1.213 | #: Return Type $; |
1870 : | efrank | 1.1 | sub min { |
1871 : | olson | 1.111 | shift if UNIVERSAL::isa($_[0],__PACKAGE__); |
1872 : | efrank | 1.1 | my(@x) = @_; |
1873 : | my($min,$i); | ||
1874 : | |||
1875 : | (@x > 0) || return undef; | ||
1876 : | $min = $x[0]; | ||
1877 : | parrello | 1.287 | for ($i=1; ($i < @x); $i++) { |
1878 : | $min = ($min > $x[$i]) ? $x[$i] : $min; | ||
1879 : | efrank | 1.1 | } |
1880 : | return $min; | ||
1881 : | } | ||
1882 : | |||
1883 : | parrello | 1.287 | =head3 max |
1884 : | |||
1885 : | C<< my $max = FIG::max(@x); >> | ||
1886 : | |||
1887 : | or | ||
1888 : | |||
1889 : | C<< my $max = $fig->max(@x); >> | ||
1890 : | efrank | 1.1 | |
1891 : | parrello | 1.287 | Return the maximum numeric value from a list. |
1892 : | efrank | 1.1 | |
1893 : | parrello | 1.287 | =over 4 |
1894 : | |||
1895 : | =item x1, x2, ... xN | ||
1896 : | |||
1897 : | List of numbers to process. | ||
1898 : | |||
1899 : | =item RETURN | ||
1900 : | |||
1901 : | Returns the numeric value of t/he list entry possessing the highest value. Returns | ||
1902 : | C<undef> if the list is empty. | ||
1903 : | efrank | 1.1 | |
1904 : | parrello | 1.287 | =back |
1905 : | efrank | 1.1 | |
1906 : | =cut | ||
1907 : | parrello | 1.213 | #: Return Type $; |
1908 : | efrank | 1.1 | sub max { |
1909 : | olson | 1.111 | shift if UNIVERSAL::isa($_[0],__PACKAGE__); |
1910 : | efrank | 1.1 | my(@x) = @_; |
1911 : | my($max,$i); | ||
1912 : | |||
1913 : | (@x > 0) || return undef; | ||
1914 : | $max = $x[0]; | ||
1915 : | parrello | 1.287 | for ($i=1; ($i < @x); $i++) { |
1916 : | $max = ($max < $x[$i]) ? $x[$i] : $max; | ||
1917 : | efrank | 1.1 | } |
1918 : | return $max; | ||
1919 : | } | ||
1920 : | |||
1921 : | parrello | 1.287 | =head3 between |
1922 : | efrank | 1.1 | |
1923 : | parrello | 1.287 | C<< my $flag = FIG::between($x, $y, $z); >> |
1924 : | efrank | 1.1 | |
1925 : | parrello | 1.287 | or |
1926 : | |||
1927 : | C<< my $flag = $fig->between($x, $y, $z); >> | ||
1928 : | |||
1929 : | Determine whether or not $y is between $x and $z. | ||
1930 : | |||
1931 : | =over 4 | ||
1932 : | |||
1933 : | =item x | ||
1934 : | |||
1935 : | First edge number. | ||
1936 : | |||
1937 : | =item y | ||
1938 : | efrank | 1.1 | |
1939 : | parrello | 1.287 | Number to examine. |
1940 : | |||
1941 : | =item z | ||
1942 : | |||
1943 : | Second edge number. | ||
1944 : | |||
1945 : | =item RETURN | ||
1946 : | |||
1947 : | Return TRUE if the number I<$y> is between the numbers I<$x> and I<$z>. The check | ||
1948 : | is inclusive (that is, if I<$y> is equal to I<$x> or I<$z> the function returns | ||
1949 : | TRUE), and the order of I<$x> and I<$z> does not matter. If I<$x> is lower than | ||
1950 : | I<$z>, then the return is TRUE if I<$x> <= I<$y> <= I<$z>. If I<$z> is lower, | ||
1951 : | then the return is TRUE if I<$x> >= I$<$y> >= I<$z>. | ||
1952 : | |||
1953 : | =back | ||
1954 : | efrank | 1.1 | |
1955 : | =cut | ||
1956 : | parrello | 1.213 | #: Return Type $; |
1957 : | efrank | 1.1 | sub between { |
1958 : | olson | 1.111 | shift if UNIVERSAL::isa($_[0],__PACKAGE__); |
1959 : | efrank | 1.1 | my($x,$y,$z) = @_; |
1960 : | |||
1961 : | parrello | 1.287 | if ($x < $z) { |
1962 : | return (($x <= $y) && ($y <= $z)); | ||
1963 : | } else { | ||
1964 : | return (($x >= $y) && ($y >= $z)); | ||
1965 : | efrank | 1.1 | } |
1966 : | } | ||
1967 : | |||
1968 : | parrello | 1.287 | =head3 standard_genetic_code |
1969 : | efrank | 1.1 | |
1970 : | parrello | 1.287 | C<< my $code = FIG::standard_genetic_code(); >> |
1971 : | efrank | 1.1 | |
1972 : | parrello | 1.287 | Return a hash containing the standard translation of nucleotide triples to proteins. |
1973 : | Methods such as L</translate> can take a translation scheme as a parameter. This method | ||
1974 : | returns the default translation scheme. The scheme is implemented as a reference to a | ||
1975 : | hash that contains nucleotide triplets as keys and has protein letters as values. | ||
1976 : | efrank | 1.1 | |
1977 : | =cut | ||
1978 : | parrello | 1.213 | #: Return Type $; |
1979 : | efrank | 1.1 | sub standard_genetic_code { |
1980 : | parrello | 1.200 | |
1981 : | efrank | 1.1 | my $code = {}; |
1982 : | |||
1983 : | $code->{"AAA"} = "K"; | ||
1984 : | $code->{"AAC"} = "N"; | ||
1985 : | $code->{"AAG"} = "K"; | ||
1986 : | $code->{"AAT"} = "N"; | ||
1987 : | $code->{"ACA"} = "T"; | ||
1988 : | $code->{"ACC"} = "T"; | ||
1989 : | $code->{"ACG"} = "T"; | ||
1990 : | $code->{"ACT"} = "T"; | ||
1991 : | $code->{"AGA"} = "R"; | ||
1992 : | $code->{"AGC"} = "S"; | ||
1993 : | $code->{"AGG"} = "R"; | ||
1994 : | $code->{"AGT"} = "S"; | ||
1995 : | $code->{"ATA"} = "I"; | ||
1996 : | $code->{"ATC"} = "I"; | ||
1997 : | $code->{"ATG"} = "M"; | ||
1998 : | $code->{"ATT"} = "I"; | ||
1999 : | $code->{"CAA"} = "Q"; | ||
2000 : | $code->{"CAC"} = "H"; | ||
2001 : | $code->{"CAG"} = "Q"; | ||
2002 : | $code->{"CAT"} = "H"; | ||
2003 : | $code->{"CCA"} = "P"; | ||
2004 : | $code->{"CCC"} = "P"; | ||
2005 : | $code->{"CCG"} = "P"; | ||
2006 : | $code->{"CCT"} = "P"; | ||
2007 : | $code->{"CGA"} = "R"; | ||
2008 : | $code->{"CGC"} = "R"; | ||
2009 : | $code->{"CGG"} = "R"; | ||
2010 : | $code->{"CGT"} = "R"; | ||
2011 : | $code->{"CTA"} = "L"; | ||
2012 : | $code->{"CTC"} = "L"; | ||
2013 : | $code->{"CTG"} = "L"; | ||
2014 : | $code->{"CTT"} = "L"; | ||
2015 : | $code->{"GAA"} = "E"; | ||
2016 : | $code->{"GAC"} = "D"; | ||
2017 : | $code->{"GAG"} = "E"; | ||
2018 : | $code->{"GAT"} = "D"; | ||
2019 : | $code->{"GCA"} = "A"; | ||
2020 : | $code->{"GCC"} = "A"; | ||
2021 : | $code->{"GCG"} = "A"; | ||
2022 : | $code->{"GCT"} = "A"; | ||
2023 : | $code->{"GGA"} = "G"; | ||
2024 : | $code->{"GGC"} = "G"; | ||
2025 : | $code->{"GGG"} = "G"; | ||
2026 : | $code->{"GGT"} = "G"; | ||
2027 : | $code->{"GTA"} = "V"; | ||
2028 : | $code->{"GTC"} = "V"; | ||
2029 : | $code->{"GTG"} = "V"; | ||
2030 : | $code->{"GTT"} = "V"; | ||
2031 : | $code->{"TAA"} = "*"; | ||
2032 : | $code->{"TAC"} = "Y"; | ||
2033 : | $code->{"TAG"} = "*"; | ||
2034 : | $code->{"TAT"} = "Y"; | ||
2035 : | $code->{"TCA"} = "S"; | ||
2036 : | $code->{"TCC"} = "S"; | ||
2037 : | $code->{"TCG"} = "S"; | ||
2038 : | $code->{"TCT"} = "S"; | ||
2039 : | $code->{"TGA"} = "*"; | ||
2040 : | $code->{"TGC"} = "C"; | ||
2041 : | $code->{"TGG"} = "W"; | ||
2042 : | $code->{"TGT"} = "C"; | ||
2043 : | $code->{"TTA"} = "L"; | ||
2044 : | $code->{"TTC"} = "F"; | ||
2045 : | $code->{"TTG"} = "L"; | ||
2046 : | $code->{"TTT"} = "F"; | ||
2047 : | parrello | 1.200 | |
2048 : | efrank | 1.1 | return $code; |
2049 : | } | ||
2050 : | |||
2051 : | parrello | 1.287 | =head3 translate |
2052 : | |||
2053 : | C<< my $aa_seq = &FIG::translate($dna_seq, $code, $fix_start); >> | ||
2054 : | |||
2055 : | Translate a DNA sequence to a protein sequence using the specified genetic code. | ||
2056 : | If I<$fix_start> is TRUE, will translate an initial C<TTG> or C<GTG> code to | ||
2057 : | C<M>. (In the standard genetic code, these two combinations normally translate | ||
2058 : | to C<V> and C<L>, respectively.) | ||
2059 : | |||
2060 : | =over 4 | ||
2061 : | efrank | 1.1 | |
2062 : | parrello | 1.287 | =item dna_seq |
2063 : | efrank | 1.1 | |
2064 : | parrello | 1.287 | DNA sequence to translate. Note that the DNA sequence can only contain |
2065 : | known nucleotides. | ||
2066 : | efrank | 1.1 | |
2067 : | parrello | 1.287 | =item code |
2068 : | efrank | 1.1 | |
2069 : | parrello | 1.287 | Reference to a hash specifying the translation code. The hash is keyed by |
2070 : | nucleotide triples, and the value for each key is the corresponding protein | ||
2071 : | letter. If this parameter is omitted, the L</standard_genetic_code> will be | ||
2072 : | used. | ||
2073 : | efrank | 1.1 | |
2074 : | parrello | 1.287 | =item fix_start |
2075 : | |||
2076 : | TRUE if the first triple is to get special treatment, else FALSE. If TRUE, | ||
2077 : | then a value of C<TTG> or C<GTG> in the first position will be translated to | ||
2078 : | C<M> instead of the value specified in the translation code. | ||
2079 : | |||
2080 : | =item RETURN | ||
2081 : | |||
2082 : | Returns a string resulting from translating each nucleotide triple into a | ||
2083 : | protein letter. | ||
2084 : | |||
2085 : | =back | ||
2086 : | |||
2087 : | =cut | ||
2088 : | #: Return Type $; | ||
2089 : | sub translate { | ||
2090 : | shift if UNIVERSAL::isa($_[0],__PACKAGE__); | ||
2091 : | |||
2092 : | my( $dna,$code,$start ) = @_; | ||
2093 : | my( $i,$j,$ln ); | ||
2094 : | my( $x,$y ); | ||
2095 : | my( $prot ); | ||
2096 : | |||
2097 : | if (! defined($code)) { | ||
2098 : | $code = &FIG::standard_genetic_code; | ||
2099 : | efrank | 1.1 | } |
2100 : | $ln = length($dna); | ||
2101 : | $prot = "X" x ($ln/3); | ||
2102 : | $dna =~ tr/a-z/A-Z/; | ||
2103 : | |||
2104 : | parrello | 1.287 | for ($i=0,$j=0; ($i < ($ln-2)); $i += 3,$j++) { |
2105 : | $x = substr($dna,$i,3); | ||
2106 : | if ($y = $code->{$x}) { | ||
2107 : | substr($prot,$j,1) = $y; | ||
2108 : | efrank | 1.1 | } |
2109 : | } | ||
2110 : | parrello | 1.200 | |
2111 : | parrello | 1.287 | if (($start) && ($ln >= 3) && (substr($dna,0,3) =~ /^[GT]TG$/)) { |
2112 : | substr($prot,0,1) = 'M'; | ||
2113 : | efrank | 1.1 | } |
2114 : | return $prot; | ||
2115 : | } | ||
2116 : | |||
2117 : | parrello | 1.287 | =head3 reverse_comp |
2118 : | |||
2119 : | C<< my $dnaR = FIG::reverse_comp($dna); >> | ||
2120 : | |||
2121 : | or | ||
2122 : | |||
2123 : | C<< my $dnaR = $fig->reverse_comp($dna); >> | ||
2124 : | |||
2125 : | Return the reverse complement os the specified DNA sequence. | ||
2126 : | efrank | 1.1 | |
2127 : | parrello | 1.287 | NOTE: for extremely long DNA strings, use L</rev_comp>, which allows you to |
2128 : | pass the strings around in the form of pointers. | ||
2129 : | efrank | 1.1 | |
2130 : | parrello | 1.287 | =over 4 |
2131 : | |||
2132 : | =item dna | ||
2133 : | efrank | 1.1 | |
2134 : | parrello | 1.287 | DNA sequence whose reverse complement is desired. |
2135 : | |||
2136 : | =item RETURN | ||
2137 : | |||
2138 : | Returns the reverse complement of the incoming DNA sequence. | ||
2139 : | |||
2140 : | =back | ||
2141 : | efrank | 1.1 | |
2142 : | =cut | ||
2143 : | parrello | 1.213 | #: Return Type $; |
2144 : | efrank | 1.1 | sub reverse_comp { |
2145 : | olson | 1.111 | shift if UNIVERSAL::isa($_[0],__PACKAGE__); |
2146 : | efrank | 1.1 | my($seq) = @_; |
2147 : | |||
2148 : | return ${&rev_comp(\$seq)}; | ||
2149 : | } | ||
2150 : | |||
2151 : | parrello | 1.287 | =head3 rev_comp |
2152 : | |||
2153 : | C<< my $dnaRP = FIG::rev_comp(\$dna); >> | ||
2154 : | |||
2155 : | or | ||
2156 : | |||
2157 : | C<< my $dnaRP = $fig->rev_comp(\$dna); >> | ||
2158 : | |||
2159 : | Return the reverse complement of the specified DNA sequence. The DNA sequence | ||
2160 : | is passed in as a string reference rather than a raw string for performance | ||
2161 : | reasons. If this is unnecessary, use L</reverse_comp>, which processes strings | ||
2162 : | instead of references to strings. | ||
2163 : | |||
2164 : | =over 4 | ||
2165 : | |||
2166 : | =item dna | ||
2167 : | |||
2168 : | Reference to the DNA sequence whose reverse complement is desired. | ||
2169 : | |||
2170 : | =item RETURN | ||
2171 : | |||
2172 : | Returns a reference to the reverse complement of the incoming DNA sequence. | ||
2173 : | |||
2174 : | =back | ||
2175 : | parrello | 1.213 | |
2176 : | =cut | ||
2177 : | #: Return Type $; | ||
2178 : | efrank | 1.1 | sub rev_comp { |
2179 : | olson | 1.111 | shift if UNIVERSAL::isa($_[0],__PACKAGE__); |
2180 : | efrank | 1.1 | my( $seqP ) = @_; |
2181 : | my( $rev ); | ||
2182 : | |||
2183 : | $rev = reverse( $$seqP ); | ||
2184 : | overbeek | 1.317 | $rev =~ tr/A-Z/a-z/; |
2185 : | $rev =~ tr/acgtumrwsykbdhv/tgcaakywsrmvhdb/; | ||
2186 : | efrank | 1.1 | return \$rev; |
2187 : | } | ||
2188 : | |||
2189 : | parrello | 1.287 | =head3 verify_dir |
2190 : | |||
2191 : | C<< FIG::verify_dir($dir); >> | ||
2192 : | efrank | 1.1 | |
2193 : | parrello | 1.287 | or |
2194 : | efrank | 1.1 | |
2195 : | parrello | 1.287 | C<< $fig->verify_dir($dir); >> |
2196 : | efrank | 1.1 | |
2197 : | parrello | 1.287 | Insure that the specified directory exists. If it must be created, the permissions will |
2198 : | be set to C<0777>. | ||
2199 : | efrank | 1.1 | |
2200 : | =cut | ||
2201 : | |||
2202 : | sub verify_dir { | ||
2203 : | olson | 1.111 | shift if UNIVERSAL::isa($_[0],__PACKAGE__); |
2204 : | efrank | 1.1 | my($dir) = @_; |
2205 : | |||
2206 : | parrello | 1.287 | if (-d $dir) { |
2207 : | return | ||
2208 : | } | ||
2209 : | if ($dir =~ /^(.*)\/[^\/]+$/) { | ||
2210 : | &verify_dir($1); | ||
2211 : | efrank | 1.1 | } |
2212 : | parrello | 1.287 | mkdir($dir,0777) || Confess("Could not make directory $dir: $!"); |
2213 : | efrank | 1.1 | } |
2214 : | |||
2215 : | parrello | 1.287 | =head3 run |
2216 : | efrank | 1.1 | |
2217 : | parrello | 1.287 | C<< FIG::run($cmd); >> |
2218 : | overbeek | 1.283 | |
2219 : | parrello | 1.287 | or |
2220 : | |||
2221 : | C<< $fig->run($cmd); >> | ||
2222 : | overbeek | 1.283 | |
2223 : | parrello | 1.287 | Run a command. If the command fails, the error will be traced. |
2224 : | overbeek | 1.283 | |
2225 : | =cut | ||
2226 : | |||
2227 : | parrello | 1.287 | sub run { |
2228 : | shift if UNIVERSAL::isa($_[0],__PACKAGE__); | ||
2229 : | my($cmd) = @_; | ||
2230 : | |||
2231 : | if ($ENV{VERBOSE}) { | ||
2232 : | my @tmp = `date`; | ||
2233 : | chomp @tmp; | ||
2234 : | print STDERR "$tmp[0]: running $cmd\n"; | ||
2235 : | } | ||
2236 : | Trace("Running command: $cmd") if T(3); | ||
2237 : | (system($cmd) == 0) || Confess("FAILED: $cmd"); | ||
2238 : | } | ||
2239 : | |||
2240 : | =head3 augment_path | ||
2241 : | |||
2242 : | C<< FIG::augment_path($dirName); >> | ||
2243 : | overbeek | 1.283 | |
2244 : | parrello | 1.287 | Add a directory to the system path. |
2245 : | overbeek | 1.283 | |
2246 : | parrello | 1.287 | This method adds a new directory to the front of the system path. It looks in the |
2247 : | configuration file to determine whether this is Windows or Unix, and uses the | ||
2248 : | appropriate separator. | ||
2249 : | efrank | 1.1 | |
2250 : | parrello | 1.287 | =over 4 |
2251 : | efrank | 1.1 | |
2252 : | parrello | 1.287 | =item dirName |
2253 : | |||
2254 : | Name of the directory to add to the path. | ||
2255 : | |||
2256 : | =back | ||
2257 : | efrank | 1.1 | |
2258 : | =cut | ||
2259 : | |||
2260 : | parrello | 1.287 | sub augment_path { |
2261 : | my ($dirName) = @_; | ||
2262 : | if ($FIG_Config::win_mode) { | ||
2263 : | $ENV{PATH} = "$dirName;$ENV{PATH}"; | ||
2264 : | } else { | ||
2265 : | $ENV{PATH} = "$dirName:$ENV{PATH}"; | ||
2266 : | overbeek | 1.278 | } |
2267 : | efrank | 1.1 | } |
2268 : | |||
2269 : | parrello | 1.287 | =head3 read_fasta_record |
2270 : | gdpusch | 1.45 | |
2271 : | parrello | 1.287 | C<< my ($seq_id, $seq_pointer, $comment) = FIG::read_fasta_record(\*FILEHANDLE); >> |
2272 : | gdpusch | 1.45 | |
2273 : | parrello | 1.287 | or |
2274 : | gdpusch | 1.45 | |
2275 : | parrello | 1.287 | C<< my ($seq_id, $seq_pointer, $comment) = $fig->read_fasta_record(\*FILEHANDLE); >> |
2276 : | gdpusch | 1.45 | |
2277 : | parrello | 1.287 | Read and parse the next logical record of a FASTA file. A FASTA logical record |
2278 : | consists of multiple lines of text. The first line begins with a C<< > >> symbol | ||
2279 : | and contains the sequence ID followed by an optional comment. (NOTE: comments | ||
2280 : | are currently deprecated, because not all tools handle them properly.) The | ||
2281 : | remaining lines contain the sequence data. | ||
2282 : | |||
2283 : | This method uses a trick to smooth its operation: the line terminator character | ||
2284 : | is temporarily changed to C<< \n> >> so that a single read operation brings in | ||
2285 : | the entire logical record. | ||
2286 : | gdpusch | 1.45 | |
2287 : | parrello | 1.287 | =over 4 |
2288 : | gdpusch | 1.45 | |
2289 : | parrello | 1.287 | =item FILEHANDLE |
2290 : | gdpusch | 1.45 | |
2291 : | parrello | 1.287 | Open handle of the FASTA file. If not specified, C<STDIN> is assumed. |
2292 : | |||
2293 : | =item RETURN | ||
2294 : | |||
2295 : | If we are at the end of the file, returns C<undef>. Otherwise, returns a | ||
2296 : | three-element list. The first element is the sequence ID, the second is | ||
2297 : | a pointer to the sequence data (that is, a string reference as opposed to | ||
2298 : | as string), and the third is the comment. | ||
2299 : | |||
2300 : | =back | ||
2301 : | gdpusch | 1.45 | |
2302 : | =cut | ||
2303 : | parrello | 1.213 | #: Return Type @; |
2304 : | parrello | 1.287 | sub read_fasta_record { |
2305 : | |||
2306 : | olson | 1.111 | shift if UNIVERSAL::isa($_[0],__PACKAGE__); |
2307 : | gdpusch | 1.45 | my ($file_handle) = @_; |
2308 : | parrello | 1.287 | my ($old_end_of_record, $fasta_record, @lines, $head, $sequence, $seq_id, $comment, @parsed_fasta_record); |
2309 : | parrello | 1.200 | |
2310 : | gdpusch | 1.45 | if (not defined($file_handle)) { $file_handle = \*STDIN; } |
2311 : | parrello | 1.200 | |
2312 : | gdpusch | 1.45 | $old_end_of_record = $/; |
2313 : | $/ = "\n>"; | ||
2314 : | parrello | 1.200 | |
2315 : | parrello | 1.287 | if (defined($fasta_record = <$file_handle>)) { |
2316 : | chomp $fasta_record; | ||
2317 : | @lines = split( /\n/, $fasta_record ); | ||
2318 : | $head = shift @lines; | ||
2319 : | $head =~ s/^>?//; | ||
2320 : | $head =~ m/^(\S+)/; | ||
2321 : | $seq_id = $1; | ||
2322 : | if ($head =~ m/^\S+\s+(.*)$/) { $comment = $1; } else { $comment = ""; } | ||
2323 : | $sequence = join( "", @lines ); | ||
2324 : | @parsed_fasta_record = ( $seq_id, \$sequence, $comment ); | ||
2325 : | } else { | ||
2326 : | @parsed_fasta_record = (); | ||
2327 : | gdpusch | 1.45 | } |
2328 : | parrello | 1.200 | |
2329 : | gdpusch | 1.45 | $/ = $old_end_of_record; |
2330 : | parrello | 1.200 | |
2331 : | gdpusch | 1.45 | return @parsed_fasta_record; |
2332 : | } | ||
2333 : | |||
2334 : | parrello | 1.287 | =head3 display_id_and_seq |
2335 : | |||
2336 : | C<< FIG::display_id_and_seq($id_and_comment, $seqP, $fh); >> | ||
2337 : | |||
2338 : | or | ||
2339 : | |||
2340 : | C<< $fig->display_id_and_seq($id_and_comment, $seqP, $fh); >> | ||
2341 : | |||
2342 : | Display a fasta ID and sequence to the specified open file. This method is designed | ||
2343 : | to work well with L</read_fasta_sequence> and L</rev_comp>, because it takes as | ||
2344 : | input a string pointer rather than a string. If the file handle is omitted it | ||
2345 : | defaults to STDOUT. | ||
2346 : | |||
2347 : | The output is formatted into a FASTA record. The first line of the output is | ||
2348 : | preceded by a C<< > >> symbol, and the sequence is split into 60-character | ||
2349 : | chunks displayed one per line. Thus, this method can be used to produce | ||
2350 : | FASTA files from data gathered by the rest of the system. | ||
2351 : | |||
2352 : | =over 4 | ||
2353 : | |||
2354 : | =item id_and_comment | ||
2355 : | |||
2356 : | The sequence ID and (optionally) the comment from the sequence's FASTA record. | ||
2357 : | The ID | ||
2358 : | gdpusch | 1.45 | |
2359 : | parrello | 1.287 | =item seqP |
2360 : | efrank | 1.1 | |
2361 : | parrello | 1.287 | Reference to a string containing the sequence. The sequence is automatically |
2362 : | formatted into 60-character chunks displayed one per line. | ||
2363 : | efrank | 1.1 | |
2364 : | parrello | 1.287 | =item fh |
2365 : | efrank | 1.1 | |
2366 : | parrello | 1.287 | Open file handle to which the ID and sequence should be output. If omitted, |
2367 : | C<STDOUT> is assumed. | ||
2368 : | |||
2369 : | =back | ||
2370 : | efrank | 1.1 | |
2371 : | =cut | ||
2372 : | |||
2373 : | parrello | 1.287 | sub display_id_and_seq { |
2374 : | mkubal | 1.53 | |
2375 : | olson | 1.111 | shift if UNIVERSAL::isa($_[0],__PACKAGE__); |
2376 : | parrello | 1.287 | |
2377 : | efrank | 1.1 | my( $id, $seq, $fh ) = @_; |
2378 : | parrello | 1.200 | |
2379 : | efrank | 1.1 | if (! defined($fh) ) { $fh = \*STDOUT; } |
2380 : | parrello | 1.200 | |
2381 : | efrank | 1.1 | print $fh ">$id\n"; |
2382 : | &display_seq($seq, $fh); | ||
2383 : | } | ||
2384 : | |||
2385 : | parrello | 1.287 | =head3 display_id_and_seq |
2386 : | |||
2387 : | C<< FIG::display_seq($seqP, $fh); >> | ||
2388 : | |||
2389 : | or | ||
2390 : | |||
2391 : | C<< $fig->display_seq($seqP, $fh); >> | ||
2392 : | |||
2393 : | Display a fasta sequence to the specified open file. This method is designed | ||
2394 : | to work well with L</read_fasta_sequence> and L</rev_comp>, because it takes as | ||
2395 : | input a string pointer rather than a string. If the file handle is omitted it | ||
2396 : | defaults to STDOUT. | ||
2397 : | |||
2398 : | The sequence is split into 60-character chunks displayed one per line for | ||
2399 : | readability. | ||
2400 : | |||
2401 : | =over 4 | ||
2402 : | |||
2403 : | =item seqP | ||
2404 : | |||
2405 : | Reference to a string containing the sequence. | ||
2406 : | |||
2407 : | =item fh | ||
2408 : | |||
2409 : | Open file handle to which the sequence should be output. If omitted, | ||
2410 : | C<STDOUT> is assumed. | ||
2411 : | |||
2412 : | =back | ||
2413 : | |||
2414 : | =cut | ||
2415 : | |||
2416 : | efrank | 1.1 | sub display_seq { |
2417 : | parrello | 1.287 | |
2418 : | olson | 1.111 | shift if UNIVERSAL::isa($_[0],__PACKAGE__); |
2419 : | parrello | 1.287 | |
2420 : | efrank | 1.1 | my ( $seq, $fh ) = @_; |
2421 : | my ( $i, $n, $ln ); | ||
2422 : | parrello | 1.200 | |
2423 : | efrank | 1.1 | if (! defined($fh) ) { $fh = \*STDOUT; } |
2424 : | |||
2425 : | $n = length($$seq); | ||
2426 : | # confess "zero-length sequence ???" if ( (! defined($n)) || ($n == 0) ); | ||
2427 : | parrello | 1.287 | for ($i=0; ($i < $n); $i += 60) { |
2428 : | if (($i + 60) <= $n) { | ||
2429 : | $ln = substr($$seq,$i,60); | ||
2430 : | } else { | ||
2431 : | $ln = substr($$seq,$i,($n-$i)); | ||
2432 : | } | ||
2433 : | print $fh "$ln\n"; | ||
2434 : | efrank | 1.1 | } |
2435 : | } | ||
2436 : | |||
2437 : | ########## I commented the pods on the following routines out, since they should not | ||
2438 : | ########## be part of the SOAP/WSTL interface | ||
2439 : | #=pod | ||
2440 : | # | ||
2441 : | parrello | 1.287 | #=head3 file2N |
2442 : | efrank | 1.1 | # |
2443 : | #usage: $n = $fig->file2N($file) | ||
2444 : | # | ||
2445 : | #In some of the databases I need to store filenames, which can waste a lot of | ||
2446 : | #space. Hence, I maintain a database for converting filenames to/from integers. | ||
2447 : | # | ||
2448 : | #=cut | ||
2449 : | # | ||
2450 : | olson | 1.111 | sub file2N :scalar { |
2451 : | efrank | 1.1 | my($self,$file) = @_; |
2452 : | my($relational_db_response); | ||
2453 : | |||
2454 : | my $rdbH = $self->db_handle; | ||
2455 : | |||
2456 : | if (($relational_db_response = $rdbH->SQL("SELECT fileno FROM file_table WHERE ( file = \'$file\')")) && | ||
2457 : | parrello | 1.298 | (@$relational_db_response == 1)) { |
2458 : | parrello | 1.287 | return $relational_db_response->[0]->[0]; |
2459 : | } elsif (($relational_db_response = $rdbH->SQL("SELECT MAX(fileno) FROM file_table ")) && (@$relational_db_response == 1) && ($relational_db_response->[0]->[0])) { | ||
2460 : | my $fileno = $relational_db_response->[0]->[0] + 1; | ||
2461 : | if ($rdbH->SQL("INSERT INTO file_table ( file, fileno ) VALUES ( \'$file\', $fileno )")) { | ||
2462 : | return $fileno; | ||
2463 : | } | ||
2464 : | } elsif ($rdbH->SQL("INSERT INTO file_table ( file, fileno ) VALUES ( \'$file\', 1 )")) { | ||
2465 : | return 1; | ||
2466 : | efrank | 1.1 | } |
2467 : | return undef; | ||
2468 : | } | ||
2469 : | |||
2470 : | #=pod | ||
2471 : | # | ||
2472 : | parrello | 1.287 | #=head3 N2file |
2473 : | efrank | 1.1 | # |
2474 : | #usage: $filename = $fig->N2file($n) | ||
2475 : | # | ||
2476 : | #In some of the databases I need to store filenames, which can waste a lot of | ||
2477 : | #space. Hence, I maintain a database for converting filenames to/from integers. | ||
2478 : | # | ||
2479 : | #=cut | ||
2480 : | # | ||
2481 : | olson | 1.111 | sub N2file :scalar { |
2482 : | efrank | 1.1 | my($self,$fileno) = @_; |
2483 : | my($relational_db_response); | ||
2484 : | |||
2485 : | my $rdbH = $self->db_handle; | ||
2486 : | |||
2487 : | if (($relational_db_response = $rdbH->SQL("SELECT file FROM file_table WHERE ( fileno = $fileno )")) && | ||
2488 : | parrello | 1.298 | (@$relational_db_response == 1)) { |
2489 : | parrello | 1.287 | return $relational_db_response->[0]->[0]; |
2490 : | efrank | 1.1 | } |
2491 : | return undef; | ||
2492 : | } | ||
2493 : | |||
2494 : | |||
2495 : | #=pod | ||
2496 : | # | ||
2497 : | parrello | 1.287 | #=head3 openF |
2498 : | efrank | 1.1 | # |
2499 : | #usage: $fig->openF($filename) | ||
2500 : | # | ||
2501 : | #Parts of the system rely on accessing numerous different files. The most obvious case is | ||
2502 : | #the situation with similarities. It is important that the system be able to run in cases in | ||
2503 : | #which an arbitrary number of files cannot be open simultaneously. This routine (with closeF) is | ||
2504 : | #a hack to handle this. I should probably just pitch them and insist that the OS handle several | ||
2505 : | #hundred open filehandles. | ||
2506 : | # | ||
2507 : | #=cut | ||
2508 : | # | ||
2509 : | sub openF { | ||
2510 : | my($self,$file) = @_; | ||
2511 : | my($fxs,$x,@fxs,$fh); | ||
2512 : | |||
2513 : | $fxs = $self->cached('_openF'); | ||
2514 : | parrello | 1.287 | if ($x = $fxs->{$file}) { |
2515 : | $x->[1] = time(); | ||
2516 : | return $x->[0]; | ||
2517 : | efrank | 1.1 | } |
2518 : | parrello | 1.200 | |
2519 : | efrank | 1.1 | @fxs = keys(%$fxs); |
2520 : | parrello | 1.287 | if (defined($fh = new FileHandle "<$file")) { |
2521 : | if (@fxs >= 50) { | ||
2522 : | @fxs = sort { $fxs->{$a}->[1] <=> $fxs->{$b}->[1] } @fxs; | ||
2523 : | $x = $fxs->{$fxs[0]}; | ||
2524 : | undef $x->[0]; | ||
2525 : | delete $fxs->{$fxs[0]}; | ||
2526 : | } | ||
2527 : | $fxs->{$file} = [$fh,time()]; | ||
2528 : | return $fh; | ||
2529 : | efrank | 1.1 | } |
2530 : | return undef; | ||
2531 : | } | ||
2532 : | |||
2533 : | #=pod | ||
2534 : | # | ||
2535 : | parrello | 1.287 | #=head3 closeF |
2536 : | efrank | 1.1 | # |
2537 : | #usage: $fig->closeF($filename) | ||
2538 : | # | ||
2539 : | #Parts of the system rely on accessing numerous different files. The most obvious case is | ||
2540 : | #the situation with similarities. It is important that the system be able to run in cases in | ||
2541 : | #which an arbitrary number of files cannot be open simultaneously. This routine (with openF) is | ||
2542 : | #a hack to handle this. I should probably just pitch them and insist that the OS handle several | ||
2543 : | #hundred open filehandles. | ||
2544 : | # | ||
2545 : | #=cut | ||
2546 : | # | ||
2547 : | sub closeF { | ||
2548 : | my($self,$file) = @_; | ||
2549 : | my($fxs,$x); | ||
2550 : | |||
2551 : | parrello | 1.287 | if (($fxs = $self->{_openF}) && ($x = $fxs->{$file})) { |
2552 : | undef $x->[0]; | ||
2553 : | delete $fxs->{$file}; | ||
2554 : | efrank | 1.1 | } |
2555 : | } | ||
2556 : | |||
2557 : | parrello | 1.287 | =head3 ec_name |
2558 : | |||
2559 : | C<< my $enzymatic_function = $fig->ec_name($ec); >> | ||
2560 : | efrank | 1.1 | |
2561 : | parrello | 1.287 | Returns the enzymatic name corresponding to the specified enzyme code. |
2562 : | efrank | 1.1 | |
2563 : | parrello | 1.287 | =over 4 |
2564 : | |||
2565 : | =item ec | ||
2566 : | efrank | 1.1 | |
2567 : | parrello | 1.287 | Code number for the enzyme whose name is desired. The code number is actually |
2568 : | a string of digits and periods (e.g. C<1.2.50.6>). | ||
2569 : | |||
2570 : | =item RETURN | ||
2571 : | |||
2572 : | Returns the name of the enzyme specified by the indicated code, or a null string | ||
2573 : | if the code is not found in the database. | ||
2574 : | |||
2575 : | =back | ||
2576 : | efrank | 1.1 | |
2577 : | =cut | ||
2578 : | |||
2579 : | sub ec_name { | ||
2580 : | my($self,$ec) = @_; | ||
2581 : | |||
2582 : | ($ec =~ /^\d+\.\d+\.\d+\.\d+$/) || return ""; | ||
2583 : | my $rdbH = $self->db_handle; | ||
2584 : | my $relational_db_response = $rdbH->SQL("SELECT name FROM ec_names WHERE ( ec = \'$ec\' )"); | ||
2585 : | |||
2586 : | return (@$relational_db_response == 1) ? $relational_db_response->[0]->[0] : ""; | ||
2587 : | return ""; | ||
2588 : | } | ||
2589 : | |||
2590 : | parrello | 1.287 | =head3 all_roles |
2591 : | efrank | 1.1 | |
2592 : | parrello | 1.287 | C<< my @roles = $fig->all_roles; >> |
2593 : | efrank | 1.1 | |
2594 : | parrello | 1.287 | Return a list of the known roles. Currently, this is a list of the enzyme codes and names. |
2595 : | efrank | 1.1 | |
2596 : | parrello | 1.287 | The return value is a list of list references. Each element of the big list contains an |
2597 : | enzyme code (EC) followed by the enzymatic name. | ||
2598 : | efrank | 1.1 | |
2599 : | =cut | ||
2600 : | |||
2601 : | sub all_roles { | ||
2602 : | my($self) = @_; | ||
2603 : | |||
2604 : | my $rdbH = $self->db_handle; | ||
2605 : | my $relational_db_response = $rdbH->SQL("SELECT ec,name FROM ec_names"); | ||
2606 : | |||
2607 : | return @$relational_db_response; | ||
2608 : | } | ||
2609 : | |||
2610 : | parrello | 1.287 | =head3 expand_ec |
2611 : | efrank | 1.1 | |
2612 : | parrello | 1.287 | C<< my $expanded_ec = $fig->expand_ec($ec); >> |
2613 : | efrank | 1.1 | |
2614 : | Expands "1.1.1.1" to "1.1.1.1 - alcohol dehydrogenase" or something like that. | ||
2615 : | |||
2616 : | =cut | ||
2617 : | |||
2618 : | sub expand_ec { | ||
2619 : | my($self,$ec) = @_; | ||
2620 : | my($name); | ||
2621 : | |||
2622 : | return ($name = $self->ec_name($ec)) ? "$ec - $name" : $ec; | ||
2623 : | } | ||
2624 : | |||
2625 : | parrello | 1.287 | =head3 clean_tmp |
2626 : | efrank | 1.1 | |
2627 : | parrello | 1.287 | C<< FIG::clean_tmp(); >> |
2628 : | efrank | 1.1 | |
2629 : | parrello | 1.287 | Delete temporary files more than two days old. |
2630 : | efrank | 1.1 | |
2631 : | We store temporary files in $FIG_Config::temp. There are specific classes of files | ||
2632 : | that are created and should be saved for at least a few days. This routine can be | ||
2633 : | invoked to clean out those that are over two days old. | ||
2634 : | |||
2635 : | =cut | ||
2636 : | |||
2637 : | sub clean_tmp { | ||
2638 : | |||
2639 : | my($file); | ||
2640 : | parrello | 1.287 | if (opendir(TMP,"$FIG_Config::temp")) { |
2641 : | # change the pattern to pick up other files that need to be cleaned up | ||
2642 : | my @temp = grep { $_ =~ /^(Geno|tmp)/ } readdir(TMP); | ||
2643 : | foreach $file (@temp) { | ||
2644 : | if (-M "$FIG_Config::temp/$file" > 2) { | ||
2645 : | unlink("$FIG_Config::temp/$file"); | ||
2646 : | } | ||
2647 : | } | ||
2648 : | efrank | 1.1 | } |
2649 : | } | ||
2650 : | |||
2651 : | ################ Routines to process genomes and genome IDs ########################## | ||
2652 : | |||
2653 : | |||
2654 : | parrello | 1.287 | =head3 genomes |
2655 : | efrank | 1.1 | |
2656 : | parrello | 1.287 | C<< my @genome_ids = $fig->genomes($complete, $restrictions, $domain); >> |
2657 : | efrank | 1.1 | |
2658 : | parrello | 1.287 | Return a list of genome IDs. If called with no parameters, all genome IDs |
2659 : | in the database will be returned. | ||
2660 : | efrank | 1.1 | |
2661 : | Genomes are assigned ids of the form X.Y where X is the taxonomic id maintained by | ||
2662 : | NCBI for the species (not the specific strain), and Y is a sequence digit assigned to | ||
2663 : | this particular genome (as one of a set with the same genus/species). Genomes also | ||
2664 : | have versions, but that is a separate issue. | ||
2665 : | |||
2666 : | parrello | 1.287 | =over 4 |
2667 : | |||
2668 : | =item complete | ||
2669 : | |||
2670 : | TRUE if only complete genomes should be returned, else FALSE. | ||
2671 : | |||
2672 : | =item restrictions | ||
2673 : | |||
2674 : | TRUE if only restriction genomes should be returned, else FALSE. | ||
2675 : | |||
2676 : | =item domain | ||
2677 : | |||
2678 : | Name of the domain from which the genomes should be returned. Possible values are | ||
2679 : | C<Bacteria>, C<Virus>, C<Eukaryota>, C<unknown>, C<Archaea>, and | ||
2680 : | C<Environmental Sample>. If no domain is specified, all domains will be | ||
2681 : | eligible. | ||
2682 : | |||
2683 : | =item RETURN | ||
2684 : | |||
2685 : | Returns a list of all the genome IDs with the specified characteristics. | ||
2686 : | |||
2687 : | =back | ||
2688 : | |||
2689 : | efrank | 1.1 | =cut |
2690 : | parrello | 1.320 | #: Return Type @; |
2691 : | olson | 1.111 | sub genomes :remote :list { |
2692 : | golsen | 1.150 | my( $self, $complete, $restrictions, $domain ) = @_; |
2693 : | overbeek | 1.13 | |
2694 : | my $rdbH = $self->db_handle; | ||
2695 : | |||
2696 : | my @where = (); | ||
2697 : | parrello | 1.287 | if ($complete) { |
2698 : | push(@where, "( complete = \'1\' )") | ||
2699 : | overbeek | 1.13 | } |
2700 : | |||
2701 : | parrello | 1.287 | if ($restrictions) { |
2702 : | push(@where, "( restrictions = \'1\' )") | ||
2703 : | overbeek | 1.13 | } |
2704 : | golsen | 1.150 | |
2705 : | parrello | 1.287 | if ($domain) { |
2706 : | push( @where, "( maindomain = '$domain' )" ) | ||
2707 : | golsen | 1.150 | } |
2708 : | |||
2709 : | overbeek | 1.13 | my $relational_db_response; |
2710 : | parrello | 1.287 | if (@where > 0) { |
2711 : | my $where = join(" AND ",@where); | ||
2712 : | $relational_db_response = $rdbH->SQL("SELECT genome FROM genome where $where"); | ||
2713 : | } else { | ||
2714 : | $relational_db_response = $rdbH->SQL("SELECT genome FROM genome"); | ||
2715 : | overbeek | 1.13 | } |
2716 : | my @genomes = sort { $a <=> $b } map { $_->[0] } @$relational_db_response; | ||
2717 : | efrank | 1.1 | return @genomes; |
2718 : | } | ||
2719 : | |||
2720 : | parrello | 1.287 | =head3 is_complete |
2721 : | |||
2722 : | C<< my $flag = $fig->is_complete($genome); >> | ||
2723 : | |||
2724 : | Return TRUE if the genome with the specified ID is complete, else FALSE. | ||
2725 : | |||
2726 : | =over 4 | ||
2727 : | |||
2728 : | =item genome | ||
2729 : | |||
2730 : | ID of the relevant genome. | ||
2731 : | |||
2732 : | =item RETURN | ||
2733 : | |||
2734 : | Returns TRUE if there is a complete genome in the database with the specified ID, | ||
2735 : | else FALSE. | ||
2736 : | |||
2737 : | =back | ||
2738 : | |||
2739 : | =cut | ||
2740 : | |||
2741 : | overbeek | 1.180 | sub is_complete { |
2742 : | my($self,$genome) = @_; | ||
2743 : | |||
2744 : | my $rdbH = $self->db_handle; | ||
2745 : | my $relational_db_response = $rdbH->SQL("SELECT genome FROM genome where (genome = '$genome') AND (complete = '1')"); | ||
2746 : | return (@$relational_db_response == 1) | ||
2747 : | parrello | 1.287 | } |
2748 : | |||
2749 : | =head3 genome_counts | ||
2750 : | |||
2751 : | C<< my ($arch, $bact, $euk, $vir, $env, $unk) = $fig->genome_counts($complete); >> | ||
2752 : | |||
2753 : | Count the number of genomes in each domain. If I<$complete> is TRUE, only complete | ||
2754 : | genomes will be included in the counts. | ||
2755 : | |||
2756 : | =over 4 | ||
2757 : | |||
2758 : | =item complete | ||
2759 : | |||
2760 : | TRUE if only complete genomes are to be counted, FALSE if all genomes are to be | ||
2761 : | counted | ||
2762 : | |||
2763 : | =item RETURN | ||
2764 : | |||
2765 : | A six-element list containing the number of genomes in each of six categories-- | ||
2766 : | Archaea, Bacteria, Eukaryota, Viral, Environmental, and Unknown, respectively. | ||
2767 : | |||
2768 : | =back | ||
2769 : | |||
2770 : | =cut | ||
2771 : | golsen | 1.150 | |
2772 : | efrank | 1.2 | sub genome_counts { |
2773 : | overbeek | 1.13 | my($self,$complete) = @_; |
2774 : | my($x,$relational_db_response); | ||
2775 : | efrank | 1.2 | |
2776 : | overbeek | 1.13 | my $rdbH = $self->db_handle; |
2777 : | |||
2778 : | parrello | 1.287 | if ($complete) { |
2779 : | $relational_db_response = $rdbH->SQL("SELECT genome, maindomain FROM genome where complete = '1'"); | ||
2780 : | } else { | ||
2781 : | $relational_db_response = $rdbH->SQL("SELECT genome,maindomain FROM genome"); | ||
2782 : | overbeek | 1.13 | } |
2783 : | |||
2784 : | gdpusch | 1.107 | my ($arch, $bact, $euk, $vir, $env, $unk) = (0, 0, 0, 0, 0, 0); |
2785 : | parrello | 1.287 | if (@$relational_db_response > 0) { |
2786 : | foreach $x (@$relational_db_response) { | ||
2787 : | if ($x->[1] =~ /^archaea/i) { ++$arch } | ||
2788 : | elsif ($x->[1] =~ /^bacter/i) { ++$bact } | ||
2789 : | elsif ($x->[1] =~ /^eukar/i) { ++$euk } | ||
2790 : | elsif ($x->[1] =~ /^vir/i) { ++$vir } | ||
2791 : | elsif ($x->[1] =~ /^env/i) { ++$env } | ||
2792 : | else { ++$unk } | ||
2793 : | parrello | 1.298 | } |
2794 : | efrank | 1.2 | } |
2795 : | parrello | 1.200 | |
2796 : | gdpusch | 1.107 | return ($arch, $bact, $euk, $vir, $env, $unk); |
2797 : | } | ||
2798 : | |||
2799 : | |||
2800 : | parrello | 1.287 | =head3 genome_domain |
2801 : | |||
2802 : | C<< my $domain = $fig->genome_domain($genome_id); >> | ||
2803 : | |||
2804 : | Find the domain of a genome. | ||
2805 : | gdpusch | 1.107 | |
2806 : | parrello | 1.287 | =over 4 |
2807 : | |||
2808 : | =item genome_id | ||
2809 : | gdpusch | 1.107 | |
2810 : | parrello | 1.287 | ID of the genome whose domain is desired. |
2811 : | gdpusch | 1.107 | |
2812 : | parrello | 1.287 | =item RETURN |
2813 : | |||
2814 : | Returns the name of the genome's domain (archaea, bacteria, etc.), or C<undef> if | ||
2815 : | the genome is not in the database. | ||
2816 : | gdpusch | 1.107 | |
2817 : | parrello | 1.292 | =back |
2818 : | |||
2819 : | gdpusch | 1.107 | =cut |
2820 : | |||
2821 : | sub genome_domain { | ||
2822 : | my($self,$genome) = @_; | ||
2823 : | my $relational_db_response; | ||
2824 : | my $rdbH = $self->db_handle; | ||
2825 : | parrello | 1.200 | |
2826 : | parrello | 1.287 | if ($genome) { |
2827 : | if (($relational_db_response = $rdbH->SQL("SELECT genome,maindomain FROM genome WHERE ( genome = \'$genome\' )")) | ||
2828 : | && (@$relational_db_response == 1)) { | ||
2829 : | # die Dumper($relational_db_response); | ||
2830 : | return $relational_db_response->[0]->[1]; | ||
2831 : | } | ||
2832 : | gdpusch | 1.107 | } |
2833 : | return undef; | ||
2834 : | efrank | 1.2 | } |
2835 : | |||
2836 : | gdpusch | 1.92 | |
2837 : | parrello | 1.287 | =head3 genome_pegs |
2838 : | gdpusch | 1.92 | |
2839 : | parrello | 1.287 | C<< my $num_pegs = $fig->genome_pegs($genome_id); >> |
2840 : | gdpusch | 1.92 | |
2841 : | parrello | 1.287 | Return the number of protein-encoding genes (PEGs) for a specified |
2842 : | genome. | ||
2843 : | gdpusch | 1.92 | |
2844 : | parrello | 1.287 | =over 4 |
2845 : | |||
2846 : | =item genome_id | ||
2847 : | |||
2848 : | ID of the genome whose PEG count is desired. | ||
2849 : | |||
2850 : | =item RETURN | ||
2851 : | |||
2852 : | Returns the number of PEGs for the specified genome, or C<undef> if the genome | ||
2853 : | is not indexed in the database. | ||
2854 : | |||
2855 : | =back | ||
2856 : | gdpusch | 1.92 | |
2857 : | =cut | ||
2858 : | |||
2859 : | sub genome_pegs { | ||
2860 : | my($self,$genome) = @_; | ||
2861 : | my $relational_db_response; | ||
2862 : | my $rdbH = $self->db_handle; | ||
2863 : | parrello | 1.200 | |
2864 : | parrello | 1.287 | if ($genome) { |
2865 : | if (($relational_db_response = $rdbH->SQL("SELECT pegs FROM genome WHERE ( genome = \'$genome\' )")) | ||
2866 : | && (@$relational_db_response == 1)) { | ||
2867 : | return $relational_db_response->[0]->[0]; | ||
2868 : | } | ||
2869 : | gdpusch | 1.92 | } |
2870 : | return undef; | ||
2871 : | } | ||
2872 : | |||
2873 : | |||
2874 : | parrello | 1.287 | =head3 genome_rnas |
2875 : | |||
2876 : | C<< my $num_rnas = $fig->genome_rnas($genome_id); >> | ||
2877 : | |||
2878 : | Return the number of RNA-encoding genes for a genome. | ||
2879 : | "$genome_id" is indexed in the "genome" database, and 'undef' otherwise. | ||
2880 : | efrank | 1.1 | |
2881 : | parrello | 1.287 | =over 4 |
2882 : | |||
2883 : | =item genome_id | ||
2884 : | |||
2885 : | ID of the genome whose RNA count is desired. | ||
2886 : | |||
2887 : | =item RETURN | ||
2888 : | gdpusch | 1.92 | |
2889 : | parrello | 1.287 | Returns the number of RNAs for the specified genome, or C<undef> if the genome |
2890 : | is not indexed in the database. | ||
2891 : | gdpusch | 1.92 | |
2892 : | parrello | 1.287 | =back |
2893 : | gdpusch | 1.92 | |
2894 : | =cut | ||
2895 : | |||
2896 : | sub genome_rnas { | ||
2897 : | my($self,$genome) = @_; | ||
2898 : | my $relational_db_response; | ||
2899 : | my $rdbH = $self->db_handle; | ||
2900 : | parrello | 1.200 | |
2901 : | parrello | 1.287 | if ($genome) { |
2902 : | if (($relational_db_response = $rdbH->SQL("SELECT rnas FROM genome WHERE ( genome = \'$genome\' )")) | ||
2903 : | && (@$relational_db_response == 1)) { | ||
2904 : | return $relational_db_response->[0]->[0]; | ||
2905 : | } | ||
2906 : | gdpusch | 1.92 | } |
2907 : | return undef; | ||
2908 : | } | ||
2909 : | |||
2910 : | |||
2911 : | parrello | 1.287 | =head3 genome_szdna |
2912 : | |||
2913 : | usage: $szdna = $fig->genome_szdna($genome_id); | ||
2914 : | |||
2915 : | Return the number of DNA base-pairs in a genome's contigs. | ||
2916 : | |||
2917 : | =over 4 | ||
2918 : | |||
2919 : | =item genome_id | ||
2920 : | |||
2921 : | ID of the genome whose base-pair count is desired. | ||
2922 : | gdpusch | 1.92 | |
2923 : | parrello | 1.287 | =item RETURN |
2924 : | efrank | 1.1 | |
2925 : | parrello | 1.287 | Returns the number of base pairs in the specified genome's contigs, or C<undef> |
2926 : | if the genome is not indexed in the database. | ||
2927 : | gdpusch | 1.91 | |
2928 : | parrello | 1.287 | =back |
2929 : | gdpusch | 1.91 | |
2930 : | =cut | ||
2931 : | |||
2932 : | gdpusch | 1.92 | sub genome_szdna { |
2933 : | gdpusch | 1.91 | my($self,$genome) = @_; |
2934 : | my $relational_db_response; | ||
2935 : | my $rdbH = $self->db_handle; | ||
2936 : | parrello | 1.200 | |
2937 : | parrello | 1.287 | if ($genome) { |
2938 : | if (($relational_db_response = | ||
2939 : | $rdbH->SQL("SELECT szdna FROM genome WHERE ( genome = \'$genome\' )")) | ||
2940 : | && (@$relational_db_response == 1)) { | ||
2941 : | |||
2942 : | return $relational_db_response->[0]->[0]; | ||
2943 : | |||
2944 : | } | ||
2945 : | gdpusch | 1.91 | } |
2946 : | return undef; | ||
2947 : | } | ||
2948 : | |||
2949 : | parrello | 1.287 | =head3 genome_version |
2950 : | gdpusch | 1.91 | |
2951 : | parrello | 1.287 | C<< my $version = $fig->genome_version($genome_id); >> |
2952 : | gdpusch | 1.91 | |
2953 : | parrello | 1.287 | Return the version number of the specified genome. |
2954 : | efrank | 1.1 | |
2955 : | Versions are incremented for major updates. They are put in as major | ||
2956 : | updates of the form 1.0, 2.0, ... | ||
2957 : | |||
2958 : | Users may do local "editing" of the DNA for a genome, but when they do, | ||
2959 : | they increment the digits to the right of the decimal. Two genomes remain | ||
2960 : | parrello | 1.200 | comparable only if the versions match identically. Hence, minor updating should be |
2961 : | efrank | 1.1 | committed only by the person/group responsible for updating that genome. |
2962 : | |||
2963 : | We can, of course, identify which genes are identical between any two genomes (by matching | ||
2964 : | the DNA or amino acid sequences). However, the basic intent of the system is to | ||
2965 : | support editing by the main group issuing periodic major updates. | ||
2966 : | |||
2967 : | parrello | 1.287 | =over 4 |
2968 : | |||
2969 : | =item genome_id | ||
2970 : | |||
2971 : | ID of the genome whose version is desired. | ||
2972 : | |||
2973 : | =item RETURN | ||
2974 : | |||
2975 : | Returns the version number of the specified genome, or C<undef> if the genome is not in | ||
2976 : | the data store or no version number has been assigned. | ||
2977 : | |||
2978 : | =back | ||
2979 : | |||
2980 : | efrank | 1.1 | =cut |
2981 : | |||
2982 : | olson | 1.113 | sub genome_version :scalar { |
2983 : | efrank | 1.1 | my($self,$genome) = @_; |
2984 : | |||
2985 : | my(@tmp); | ||
2986 : | if ((-s "$FIG_Config::organisms/$genome/VERSION") && | ||
2987 : | parrello | 1.298 | (@tmp = `cat $FIG_Config::organisms/$genome/VERSION`) && |
2988 : | ($tmp[0] =~ /^(\S+)$/)) { | ||
2989 : | return $1; | ||
2990 : | efrank | 1.1 | } |
2991 : | return undef; | ||
2992 : | } | ||
2993 : | |||
2994 : | parrello | 1.287 | =head3 genome_md5sum |
2995 : | olson | 1.236 | |
2996 : | parrello | 1.287 | C<< my $md5sum = $fig->genome_md5sum($genome_id); >> |
2997 : | olson | 1.236 | |
2998 : | parrello | 1.287 | Returns the MD5 checksum of the specified genome. |
2999 : | olson | 1.236 | |
3000 : | The checksum of a genome is defined as the checksum of its signature file. The signature | ||
3001 : | file consists of tab-separated lines, one for each contig, ordered by the contig id. | ||
3002 : | parrello | 1.287 | Each line contains the contig ID, the length of the contig in nucleotides, and the |
3003 : | olson | 1.236 | MD5 checksum of the nucleotide data, with uppercase letters forced to lower case. |
3004 : | |||
3005 : | parrello | 1.287 | The checksum is indexed in the database. If you know a genome's checksum, you can use |
3006 : | the L</genome_with_md5sum> method to find its ID in the database. | ||
3007 : | |||
3008 : | =over 4 | ||
3009 : | |||
3010 : | =item genome | ||
3011 : | |||
3012 : | ID of the genome whose checksum is desired. | ||
3013 : | |||
3014 : | =item RETURN | ||
3015 : | |||
3016 : | Returns the specified genome's checksum, or C<undef> if the genome is not in the | ||
3017 : | database. | ||
3018 : | |||
3019 : | =back | ||
3020 : | olson | 1.236 | |
3021 : | =cut | ||
3022 : | |||
3023 : | olson | 1.237 | sub genome_md5sum :scalar { |
3024 : | olson | 1.236 | my($self,$genome) = @_; |
3025 : | my $relational_db_response; | ||
3026 : | my $rdbH = $self->db_handle; | ||
3027 : | |||
3028 : | parrello | 1.287 | if ($genome) { |
3029 : | if (($relational_db_response = | ||
3030 : | $rdbH->SQL("SELECT md5sum FROM genome_md5sum WHERE ( genome = \'$genome\' )")) | ||
3031 : | && (@$relational_db_response == 1)) { | ||
3032 : | return $relational_db_response->[0]->[0]; | ||
3033 : | } | ||
3034 : | olson | 1.236 | } |
3035 : | return undef; | ||
3036 : | } | ||
3037 : | |||
3038 : | parrello | 1.287 | =head3 genome_with_md5sum |
3039 : | |||
3040 : | C<< my $genome = $fig->genome_with_md5sum($cksum); >> | ||
3041 : | |||
3042 : | Find a genome with the specified checksum. | ||
3043 : | |||
3044 : | The MD5 checksum is computed from the content of the genome (see L</genome_md5sum>). This method | ||
3045 : | can be used to determine if a genome already exists for a specified content. | ||
3046 : | |||
3047 : | =over 4 | ||
3048 : | |||
3049 : | =item cksum | ||
3050 : | |||
3051 : | Checksum to use for searching the genome table. | ||
3052 : | olson | 1.260 | |
3053 : | parrello | 1.287 | =item RETURN |
3054 : | |||
3055 : | The ID of a genome with the specified checksum, or C<undef> if no such genome exists. | ||
3056 : | olson | 1.260 | |
3057 : | parrello | 1.287 | =back |
3058 : | olson | 1.260 | |
3059 : | =cut | ||
3060 : | |||
3061 : | sub genome_with_md5sum :scalar { | ||
3062 : | my($self,$cksum) = @_; | ||
3063 : | my $relational_db_response; | ||
3064 : | my $rdbH = $self->db_handle; | ||
3065 : | |||
3066 : | parrello | 1.287 | if (($relational_db_response = |
3067 : | $rdbH->SQL("SELECT genome FROM genome_md5sum WHERE ( md5sum = \'$cksum\' )")) | ||
3068 : | parrello | 1.298 | && (@$relational_db_response == 1)) { |
3069 : | return $relational_db_response->[0]->[0]; | ||
3070 : | olson | 1.260 | } |
3071 : | |||
3072 : | return undef; | ||
3073 : | } | ||
3074 : | |||
3075 : | parrello | 1.287 | =head3 contig_md5sum |
3076 : | |||
3077 : | C<< my $cksum = $fig->contig_md5sum($genome, $contig); >> | ||
3078 : | |||
3079 : | Return the MD5 checksum for a contig. The MD5 checksum is computed from the content | ||
3080 : | of the contig. This method retrieves the checksum stored in the database. The checksum | ||
3081 : | can be compared to the checksum of an external contig as a cheap way of seeing if they | ||
3082 : | match. | ||
3083 : | |||
3084 : | =over 4 | ||
3085 : | |||
3086 : | =item genome | ||
3087 : | |||
3088 : | ID of the genome containing the contig. | ||
3089 : | |||
3090 : | =item contig | ||
3091 : | |||
3092 : | ID of the relevant contig. | ||
3093 : | |||
3094 : | =item RETURN | ||
3095 : | |||
3096 : | Returns the checksum of the specified contig, or C<undef> if the contig is not in the | ||
3097 : | database. | ||
3098 : | |||
3099 : | =back | ||
3100 : | |||
3101 : | =cut | ||
3102 : | |||
3103 : | olson | 1.237 | sub contig_md5sum :scalar { |
3104 : | my($self, $genome, $contig) = @_; | ||
3105 : | my $relational_db_response; | ||
3106 : | my $rdbH = $self->db_handle; | ||
3107 : | |||
3108 : | parrello | 1.287 | if ($genome) { |
3109 : | if (($relational_db_response = | ||
3110 : | $rdbH->SQL(qq(SELECT md5 FROM contig_md5sums WHERE (genome = ? AND contig = ?)), undef, $genome, $contig)) | ||
3111 : | && (@$relational_db_response == 1)) { | ||
3112 : | return $relational_db_response->[0]->[0]; | ||
3113 : | } | ||
3114 : | olson | 1.237 | } |
3115 : | return undef; | ||
3116 : | } | ||
3117 : | |||
3118 : | parrello | 1.287 | =head3 genus_species |
3119 : | |||
3120 : | C<< my $gs = $fig->genus_species($genome_id); >> | ||
3121 : | |||
3122 : | Return the genus, species, and possibly also the strain of a specified genome. | ||
3123 : | |||
3124 : | This method converts a genome ID into a more recognizble species name. The species name | ||
3125 : | is stored directly in the genome table of the database. Essentially, if the strain is | ||
3126 : | present in the database, it will be returned by this method, and if it's not present, | ||
3127 : | it won't. | ||
3128 : | efrank | 1.1 | |
3129 : | parrello | 1.287 | =over 4 |
3130 : | |||
3131 : | =item genome_id | ||
3132 : | |||
3133 : | ID of the genome whose name is desired. | ||
3134 : | efrank | 1.1 | |
3135 : | parrello | 1.287 | =item RETURN |
3136 : | |||
3137 : | Returns the scientific species name associated with the specified ID, or C<undef> if the | ||
3138 : | ID is not in the database. | ||
3139 : | efrank | 1.1 | |
3140 : | parrello | 1.287 | =back |
3141 : | efrank | 1.1 | |
3142 : | =cut | ||
3143 : | parrello | 1.320 | #: Return Type $; |
3144 : | olson | 1.111 | sub genus_species :scalar { |
3145 : | efrank | 1.1 | my ($self,$genome) = @_; |
3146 : | overbeek | 1.13 | my $ans; |
3147 : | efrank | 1.1 | |
3148 : | my $genus_species = $self->cached('_genus_species'); | ||
3149 : | parrello | 1.287 | if (! ($ans = $genus_species->{$genome})) { |
3150 : | my $rdbH = $self->db_handle; | ||
3151 : | my $relational_db_response = $rdbH->SQL("SELECT genome,gname FROM genome"); | ||
3152 : | my $pair; | ||
3153 : | foreach $pair (@$relational_db_response) { | ||
3154 : | $genus_species->{$pair->[0]} = $pair->[1]; | ||
3155 : | } | ||
3156 : | $ans = $genus_species->{$genome}; | ||
3157 : | efrank | 1.1 | } |
3158 : | return $ans; | ||
3159 : | } | ||
3160 : | |||
3161 : | parrello | 1.287 | =head3 org_of |
3162 : | |||
3163 : | C<< my $org = $fig->org_of($prot_id); >> | ||
3164 : | |||
3165 : | Return the genus/species name of the organism containing a protein. Note that in this context | ||
3166 : | I<protein> is not a certain string of amino acids but a protein encoding region on a specific | ||
3167 : | contig. | ||
3168 : | |||
3169 : | For a FIG protein ID (e.g. C<fig|134537.1.peg.123>), the organism and strain | ||
3170 : | information is always available. In the case of external proteins, we can usually | ||
3171 : | determine an organism, but not anything more precise than genus/species (and | ||
3172 : | often not that). When the organism name is not present, a null string is returned. | ||
3173 : | |||
3174 : | =over 4 | ||
3175 : | |||
3176 : | =item prot_id | ||
3177 : | efrank | 1.1 | |
3178 : | parrello | 1.287 | Protein or feature ID. |
3179 : | efrank | 1.1 | |
3180 : | parrello | 1.287 | =item RETURN |
3181 : | |||
3182 : | Returns the displayable scientific name (genus, species, and strain) of the organism containing | ||
3183 : | the identified PEG. If the name is not available, returns a null string. If the PEG is not found, | ||
3184 : | returns C<undef>. | ||
3185 : | efrank | 1.1 | |
3186 : | parrello | 1.287 | =back |
3187 : | efrank | 1.1 | |
3188 : | =cut | ||
3189 : | |||
3190 : | sub org_of { | ||
3191 : | my($self,$prot_id) = @_; | ||
3192 : | my $relational_db_response; | ||
3193 : | my $rdbH = $self->db_handle; | ||
3194 : | |||
3195 : | parrello | 1.287 | if ($prot_id =~ /^fig\|/) { |
3196 : | return $self->is_deleted_fid( $prot_id) ? undef | ||
3197 : | : $self->genus_species( $self->genome_of( $prot_id ) ) || ""; | ||
3198 : | efrank | 1.1 | } |
3199 : | |||
3200 : | parrello | 1.287 | if (($relational_db_response = |
3201 : | $rdbH->SQL("SELECT org FROM external_orgs WHERE ( prot = \'$prot_id\' )")) && | ||
3202 : | (@$relational_db_response >= 1)) { | ||
3203 : | $relational_db_response->[0]->[0] =~ s/^\d+://; | ||
3204 : | return $relational_db_response->[0]->[0]; | ||
3205 : | efrank | 1.1 | } |
3206 : | return ""; | ||
3207 : | } | ||
3208 : | |||
3209 : | parrello | 1.287 | =head3 genus_species_domain |
3210 : | |||
3211 : | C<< my ($gs, $domain) = $fig->genus_species_domain($genome_id); >> | ||
3212 : | |||
3213 : | Returns a genome's genus and species (and strain if that has been properly | ||
3214 : | recorded) in a printable form, along with its domain. This method is similar | ||
3215 : | to L</genus_species>, except it also returns the domain name (archaea, | ||
3216 : | bacteria, etc.). | ||
3217 : | |||
3218 : | =over 4 | ||
3219 : | |||
3220 : | =item genome_id | ||
3221 : | |||
3222 : | ID of the genome whose species and domain information is desired. | ||
3223 : | golsen | 1.130 | |
3224 : | parrello | 1.287 | =item RETURN |
3225 : | golsen | 1.130 | |
3226 : | parrello | 1.287 | Returns a two-element list. The first element is the species name and the |
3227 : | second is the domain name. | ||
3228 : | golsen | 1.130 | |
3229 : | parrello | 1.287 | =back |
3230 : | golsen | 1.130 | |
3231 : | =cut | ||
3232 : | |||
3233 : | sub genus_species_domain { | ||
3234 : | my ($self, $genome) = @_; | ||
3235 : | |||
3236 : | my $genus_species_domain = $self->cached('_genus_species_domain'); | ||
3237 : | parrello | 1.287 | if ( ! $genus_species_domain->{ $genome } ) { |
3238 : | my $rdbH = $self->db_handle; | ||
3239 : | my $relational_db_response = $rdbH->SQL("SELECT genome,gname,maindomain FROM genome"); | ||
3240 : | my $triple; | ||
3241 : | foreach $triple ( @$relational_db_response ) { | ||
3242 : | $genus_species_domain->{ $triple->[0] } = [ $triple->[1], $triple->[2] ]; | ||
3243 : | } | ||
3244 : | golsen | 1.130 | } |
3245 : | my $gsdref = $genus_species_domain->{ $genome }; | ||
3246 : | return $gsdref ? @$gsdref : ( "", "" ); | ||
3247 : | } | ||
3248 : | |||
3249 : | parrello | 1.287 | =head3 domain_color |
3250 : | |||
3251 : | C<< my $web_color = FIG::domain_color($domain); >> | ||
3252 : | |||
3253 : | Return the web color string associated with a specified domain. The colors are | ||
3254 : | extremely subtle (86% luminance), so they absolutely require a black background. | ||
3255 : | Archaea are slightly cyan, bacteria are slightly magenta, eukaryota are slightly | ||
3256 : | yellow, viruses are slightly silver, environmental samples are slightly gray, | ||
3257 : | and unknown or invalid domains are pure white. | ||
3258 : | |||
3259 : | =over 4 | ||
3260 : | |||
3261 : | =item domain | ||
3262 : | |||
3263 : | Name of the domain whose color is desired. | ||
3264 : | |||
3265 : | =item RETURN | ||
3266 : | |||
3267 : | Returns a web color string for the specified domain (e.g. C<#FFDDFF> for | ||
3268 : | bacteria). | ||
3269 : | |||
3270 : | =back | ||
3271 : | |||
3272 : | =cut | ||
3273 : | golsen | 1.130 | |
3274 : | my %domain_color = ( AR => "#DDFFFF", BA => "#FFDDFF", EU => "#FFFFDD", | ||
3275 : | VI => "#DDDDDD", EN => "#BBBBBB" ); | ||
3276 : | |||
3277 : | sub domain_color { | ||
3278 : | my ($domain) = @_; | ||
3279 : | defined $domain || return "#FFFFFF"; | ||
3280 : | return $domain_color{ uc substr($domain, 0, 2) } || "#FFFFFF"; | ||
3281 : | } | ||
3282 : | |||
3283 : | parrello | 1.287 | =head3 org_and_color_of |
3284 : | golsen | 1.130 | |
3285 : | parrello | 1.287 | C<< my ($org, $color) = $fig->org_and_domain_of($prot_id); >> |
3286 : | golsen | 1.130 | |
3287 : | parrello | 1.287 | Return the best guess organism and domain html color string of an organism. |
3288 : | In the case of external proteins, we can usually determine an organism, but not | ||
3289 : | anything more precise than genus/species (and often not that). | ||
3290 : | |||
3291 : | =over 4 | ||
3292 : | |||
3293 : | =item prot_id | ||
3294 : | |||
3295 : | Relevant protein or feature ID. | ||
3296 : | |||
3297 : | =item RETURN | ||
3298 : | golsen | 1.130 | |
3299 : | parrello | 1.287 | Returns a two-element list. The first element is the displayable organism name, and the second |
3300 : | is an HTML color string based on the domain (see L</domain_color>). | ||
3301 : | golsen | 1.130 | |
3302 : | parrello | 1.287 | =back |
3303 : | golsen | 1.130 | |
3304 : | =cut | ||
3305 : | |||
3306 : | sub org_and_color_of { | ||
3307 : | my($self,$prot_id) = @_; | ||
3308 : | my $relational_db_response; | ||
3309 : | my $rdbH = $self->db_handle; | ||
3310 : | |||
3311 : | parrello | 1.287 | if ($prot_id =~ /^fig\|/) { |
3312 : | my( $gs, $domain ) = $self->genus_species_domain($self->genome_of($prot_id)); | ||
3313 : | return ( $gs, domain_color( $domain ) ); | ||
3314 : | golsen | 1.130 | } |
3315 : | |||
3316 : | parrello | 1.287 | if (($relational_db_response = |
3317 : | $rdbH->SQL("SELECT org FROM external_orgs WHERE ( prot = \'$prot_id\' )")) && | ||
3318 : | (@$relational_db_response >= 1)) { | ||
3319 : | return ($relational_db_response->[0]->[0], "#FFFFFF"); | ||
3320 : | golsen | 1.130 | } |
3321 : | return ("", "#FFFFFF"); | ||
3322 : | } | ||
3323 : | |||
3324 : | redwards | 1.310 | =head3 partial_genus_matching |
3325 : | |||
3326 : | Return a list of genome IDs that match a partial genus. | ||
3327 : | |||
3328 : | redwards | 1.311 | For example partial_genus_matching("Listeria") will return all genome IDs that begin with Listeria, and this can also be restricted to complete genomes with another argument like this partial_genus_matching("Listeria", 1) |
3329 : | redwards | 1.310 | |
3330 : | =cut | ||
3331 : | |||
3332 : | sub partial_genus_matching { | ||
3333 : | redwards | 1.311 | my ($self, $gen, $complete)=@_; |
3334 : | return grep {$self->genus_species($_) =~ /$gen/i} $self->genomes($complete); | ||
3335 : | redwards | 1.310 | } |
3336 : | |||
3337 : | |||
3338 : | parrello | 1.287 | =head3 abbrev |
3339 : | |||
3340 : | C<< my $abbreviated_name = FIG::abbrev($genome_name); >> | ||
3341 : | golsen | 1.130 | |
3342 : | parrello | 1.287 | or |
3343 : | efrank | 1.1 | |
3344 : | parrello | 1.287 | C<< my $abbreviated_name = $fig->abbrev($genome_name); >> |
3345 : | efrank | 1.1 | |
3346 : | parrello | 1.287 | Abbreviate a genome name to 10 characters or less. |
3347 : | efrank | 1.1 | |
3348 : | For alignments and such, it is very useful to be able to produce an abbreviation of genus/species. | ||
3349 : | That's what this does. Note that multiple genus/species might reduce to the same abbreviation, so | ||
3350 : | be careful (disambiguate them, if you must). | ||
3351 : | |||
3352 : | parrello | 1.287 | The abbreviation is formed from the first three letters of the species name followed by the |
3353 : | first three letters of the genus name followed by the first three letters of the species name and | ||
3354 : | then the next four nonblank characters. | ||
3355 : | |||
3356 : | =over 4 | ||
3357 : | |||
3358 : | =item genome_name | ||
3359 : | |||
3360 : | The name to abbreviate. | ||
3361 : | |||
3362 : | =item RETURN | ||
3363 : | |||
3364 : | An abbreviated version of the specified name. | ||
3365 : | |||
3366 : | =back | ||
3367 : | |||
3368 : | efrank | 1.1 | =cut |
3369 : | |||
3370 : | olson | 1.111 | sub abbrev :scalar { |
3371 : | shift if UNIVERSAL::isa($_[0],__PACKAGE__); | ||
3372 : | efrank | 1.1 | my($genome_name) = @_; |
3373 : | |||
3374 : | $genome_name =~ s/^(\S{3})\S+/$1./; | ||
3375 : | overbeek | 1.198 | $genome_name =~ s/^(\S+)\s+(\S{3})\S+/$1$2./; |
3376 : | overbeek | 1.257 | $genome_name =~ s/ //g; |
3377 : | parrello | 1.287 | if (length($genome_name) > 10) { |
3378 : | parrello | 1.298 | $genome_name = substr($genome_name,0,10); |
3379 : | efrank | 1.1 | } |
3380 : | return $genome_name; | ||
3381 : | } | ||
3382 : | |||
3383 : | ################ Routines to process Features and Feature IDs ########################## | ||
3384 : | |||
3385 : | parrello | 1.287 | =head3 ftype |
3386 : | |||
3387 : | C<< my $type = FIG::ftype($fid); >> | ||
3388 : | efrank | 1.1 | |
3389 : | parrello | 1.287 | or |
3390 : | efrank | 1.1 | |
3391 : | parrello | 1.287 | C<< my $type = $fig->ftype($fid); >> |
3392 : | efrank | 1.1 | |
3393 : | Returns the type of a feature, given the feature ID. This just amounts | ||
3394 : | parrello | 1.287 | to lifting it out of the feature ID, since features have IDs of the form |
3395 : | efrank | 1.1 | |
3396 : | parrello | 1.287 | fig|x.y.f.n |
3397 : | efrank | 1.1 | |
3398 : | where | ||
3399 : | x.y is the genome ID | ||
3400 : | parrello | 1.287 | f is the type of feature |
3401 : | efrank | 1.1 | n is an integer that is unique within the genome/type |
3402 : | |||
3403 : | parrello | 1.287 | =over 4 |
3404 : | |||
3405 : | =item fid | ||
3406 : | |||
3407 : | FIG ID of the feature whose type is desired. | ||
3408 : | |||
3409 : | =item RETURN | ||
3410 : | |||
3411 : | Returns the feature type (e.g. C<peg>, C<rna>, C<pi>, or C<pp>), or C<undef> if the | ||
3412 : | feature ID is not a FIG ID. | ||
3413 : | |||
3414 : | =back | ||
3415 : | |||
3416 : | efrank | 1.1 | =cut |
3417 : | |||
3418 : | sub ftype { | ||
3419 : | olson | 1.111 | shift if UNIVERSAL::isa($_[0],__PACKAGE__); |
3420 : | efrank | 1.1 | my($feature_id) = @_; |
3421 : | |||
3422 : | parrello | 1.287 | if ($feature_id =~ /^fig\|\d+\.\d+\.([^\.]+)/) { |
3423 : | return $1; | ||
3424 : | efrank | 1.1 | } |
3425 : | return undef; | ||
3426 : | } | ||
3427 : | |||
3428 : | parrello | 1.287 | =head3 genome_of |
3429 : | |||
3430 : | C<< my $genome_id = $fig->genome_of($fid); >> | ||
3431 : | |||
3432 : | or | ||
3433 : | |||
3434 : | C<< my $genome_id = FIG::genome_of($fid); >> | ||
3435 : | |||
3436 : | Return the genome ID from a feature ID. | ||
3437 : | efrank | 1.1 | |
3438 : | parrello | 1.287 | =over 4 |
3439 : | |||
3440 : | =item fid | ||
3441 : | |||
3442 : | ID of the feature whose genome ID is desired. | ||
3443 : | |||
3444 : | =item RETURN | ||
3445 : | efrank | 1.1 | |
3446 : | parrello | 1.287 | If the feature ID is a FIG ID, returns the genome ID embedded inside it; otherwise, it |
3447 : | returns C<undef>. | ||
3448 : | efrank | 1.1 | |
3449 : | parrello | 1.287 | =back |
3450 : | efrank | 1.1 | |
3451 : | =cut | ||
3452 : | |||
3453 : | |||
3454 : | olson | 1.113 | sub genome_of :scalar { |
3455 : | olson | 1.111 | shift if UNIVERSAL::isa($_[0],__PACKAGE__); |
3456 : | parrello | 1.200 | my $prot_id = (@_ == 1) ? $_[0] : $_[1]; |
3457 : | efrank | 1.1 | |
3458 : | if ($prot_id =~ /^fig\|(\d+\.\d+)/) { return $1; } | ||
3459 : | return undef; | ||
3460 : | } | ||
3461 : | |||
3462 : | parrello | 1.287 | =head3 genome_and_peg_of |
3463 : | |||
3464 : | C<< my ($genome_id, $peg_number = FIG::genome_and_peg_of($fid); >> | ||
3465 : | |||
3466 : | C<< my ($genome_id, $peg_number = $fig->genome_and_peg_of($fid); >> | ||
3467 : | olson | 1.96 | |
3468 : | parrello | 1.287 | Return the genome ID and peg number from a feature ID. |
3469 : | olson | 1.96 | |
3470 : | parrello | 1.287 | =over 4 |
3471 : | |||
3472 : | =item prot_id | ||
3473 : | |||
3474 : | ID of the feature whose genome and PEG number as desired. | ||
3475 : | |||
3476 : | =item RETURN | ||
3477 : | |||
3478 : | Returns the genome ID and peg number associated with a feature if the feature | ||
3479 : | is represented by a FIG ID, else C<undef>. | ||
3480 : | |||
3481 : | =back | ||
3482 : | olson | 1.96 | |
3483 : | =cut | ||
3484 : | |||
3485 : | sub genome_and_peg_of { | ||
3486 : | olson | 1.111 | shift if UNIVERSAL::isa($_[0],__PACKAGE__); |
3487 : | parrello | 1.200 | my $prot_id = (@_ == 1) ? $_[0] : $_[1]; |
3488 : | olson | 1.96 | |
3489 : | parrello | 1.287 | if ($prot_id =~ /^fig\|(\d+\.\d+)\.peg\.(\d+)/) { |
3490 : | parrello | 1.298 | return ($1, $2); |
3491 : | olson | 1.96 | } |
3492 : | return undef; | ||
3493 : | } | ||
3494 : | |||
3495 : | parrello | 1.287 | =head3 by_fig_id |
3496 : | |||
3497 : | C<< my @sorted_by_fig_id = sort { FIG::by_fig_id($a,$b) } @fig_ids; >> | ||
3498 : | |||
3499 : | Compare two feature IDs. | ||
3500 : | |||
3501 : | This function is designed to assist in sorting features by ID. The sort is by | ||
3502 : | genome ID followed by feature type and then feature number. | ||
3503 : | |||
3504 : | =over 4 | ||
3505 : | |||
3506 : | =item a | ||
3507 : | efrank | 1.1 | |
3508 : | parrello | 1.287 | First feature ID. |
3509 : | efrank | 1.1 | |
3510 : | parrello | 1.287 | =item b |
3511 : | efrank | 1.1 | |
3512 : | parrello | 1.287 | Second feature ID. |
3513 : | |||
3514 : | =item RETURN | ||
3515 : | |||
3516 : | Returns a negative number if the first parameter is smaller, zero if both parameters | ||
3517 : | are equal, and a positive number if the first parameter is greater. | ||
3518 : | |||
3519 : | =back | ||
3520 : | efrank | 1.1 | |
3521 : | =cut | ||
3522 : | |||
3523 : | sub by_fig_id { | ||
3524 : | my($a,$b) = @_; | ||
3525 : | my($g1,$g2,$t1,$t2,$n1,$n2); | ||
3526 : | if (($a =~ /^fig\|(\d+\.\d+).([^\.]+)\.(\d+)$/) && (($g1,$t1,$n1) = ($1,$2,$3)) && | ||
3527 : | parrello | 1.298 | ($b =~ /^fig\|(\d+\.\d+).([^\.]+)\.(\d+)$/) && (($g2,$t2,$n2) = ($1,$2,$3))) { |
3528 : | ($g1 <=> $g2) or ($t1 cmp $t2) or ($n1 <=> $n2); | ||
3529 : | parrello | 1.287 | } else { |
3530 : | parrello | 1.298 | $a cmp $b; |
3531 : | efrank | 1.1 | } |
3532 : | } | ||
3533 : | |||
3534 : | parrello | 1.287 | =head3 genes_in_region |
3535 : | efrank | 1.1 | |
3536 : | parrello | 1.287 | C<< my ($features_in_region, $beg1, $end1) = $fig->genes_in_region($genome, $contig, $beg, $end, size_limit); >> |
3537 : | efrank | 1.1 | |
3538 : | parrello | 1.287 | Locate features that overlap a specified region of a contig. This includes features that begin or end |
3539 : | outside that region, just so long as some part of the feature can be found in the region of interest. | ||
3540 : | efrank | 1.1 | |
3541 : | It is often important to be able to find the genes that occur in a specific region on | ||
3542 : | a chromosome. This routine is designed to provide this information. It returns all genes | ||
3543 : | parrello | 1.287 | that overlap positions from I<$beg> through I<$end> in the specified contig. |
3544 : | |||
3545 : | The I<$size_limit> parameter limits the search process. It is presumed that no features are longer than the | ||
3546 : | specified size limit. A shorter size limit means you'll miss some features; a longer size limit significantly | ||
3547 : | slows the search process. For prokaryotes, a value of C<10000> (the default) seems to work best. | ||
3548 : | |||
3549 : | =over 4 | ||
3550 : | |||
3551 : | =item genome | ||
3552 : | |||
3553 : | ID of the genome containing the relevant contig. | ||
3554 : | |||
3555 : | =item contig | ||
3556 : | |||
3557 : | ID of the relevant contig. | ||
3558 : | |||
3559 : | =item beg | ||
3560 : | |||
3561 : | Position of the first base pair in the region of interest. | ||
3562 : | |||
3563 : | =item end | ||
3564 : | |||
3565 : | Position of the last base pair in the region of interest. | ||
3566 : | |||
3567 : | =item size_limit | ||
3568 : | |||
3569 : | Maximum allowable size for a feature. If omitted, C<10000> is assumed. | ||
3570 : | |||
3571 : | =item RETURN | ||
3572 : | efrank | 1.1 | |
3573 : | parrello | 1.287 | Returns a three-element list. The first element is a reference to a list of the feature IDs found. The second |
3574 : | element is the position of the leftmost base pair in any feature found. This may be well before the region of | ||
3575 : | interest begins or it could be somewhere inside. The third element is the position of the rightmost base pair | ||
3576 : | in any feature found. Again, this can be somewhere inside the region or it could be well to the right of it. | ||
3577 : | |||
3578 : | =back | ||
3579 : | efrank | 1.1 | |
3580 : | =cut | ||
3581 : | parrello | 1.213 | #: Return Type @; |
3582 : | efrank | 1.1 | sub genes_in_region { |
3583 : | parrello | 1.287 | my($self, $genome, $contig, $beg, $end, $pad) = @_; |
3584 : | if (!defined $pad) { $pad = 10000; } | ||
3585 : | efrank | 1.1 | my($x,$relational_db_response,$feature_id,$b1,$e1,@feat,@tmp,$l,$u); |
3586 : | |||
3587 : | my $rdbH = $self->db_handle; | ||
3588 : | |||
3589 : | parrello | 1.200 | my $minV = $beg - $pad; |
3590 : | efrank | 1.1 | my $maxV = $end + $pad; |
3591 : | parrello | 1.287 | if (($relational_db_response = $rdbH->SQL("SELECT id FROM features " |
3592 : | . " WHERE ( minloc > $minV ) AND ( minloc < $maxV ) AND ( maxloc < $maxV) AND " | ||
3593 : | . " ( genome = \'$genome\' ) AND ( contig = \'$contig\' );")) && | ||
3594 : | (@$relational_db_response >= 1)) { | ||
3595 : | @tmp = sort { ($a->[1] cmp $b->[1]) or (($a->[2]+$a->[3]) <=> ($b->[2]+$b->[3])) } | ||
3596 : | map { $feature_id = $_->[0]; $x = $self->feature_location($feature_id); $x ? [$feature_id,&boundaries_of($x)] : () | ||
3597 : | } @$relational_db_response; | ||
3598 : | efrank | 1.1 | |
3599 : | |||
3600 : | parrello | 1.287 | ($l,$u) = (10000000000,0); |
3601 : | foreach $x (@tmp) | ||
3602 : | { | ||
3603 : | ($feature_id,undef,$b1,$e1) = @$x; | ||
3604 : | if (&between($beg,&min($b1,$e1),$end) || &between(&min($b1,$e1),$beg,&max($b1,$e1))) | ||
3605 : | { | ||
3606 : | if (! $self->is_deleted_fid($feature_id)) | ||
3607 : | { | ||
3608 : | push(@feat,$feature_id); | ||
3609 : | $l = &min($l,&min($b1,$e1)); | ||
3610 : | $u = &max($u,&max($b1,$e1)); | ||
3611 : | } | ||
3612 : | } | ||
3613 : | } | ||
3614 : | (@feat <= 0) || return ([@feat],$l,$u); | ||
3615 : | efrank | 1.1 | } |
3616 : | return ([],$l,$u); | ||
3617 : | } | ||
3618 : | |||
3619 : | golsen | 1.141 | |
3620 : | #============================================================================= | ||
3621 : | # Using the following version is better, but it brings out a very annoying | ||
3622 : | # issue with some genomes. It already exists in the current code (above) | ||
3623 : | # for some genes in some genomes. For example, visit fig|70601.1.peg.1. | ||
3624 : | # This is true for any genome that has a feature that crosses the origin. | ||
3625 : | # The root of the problem lies in boundaries_of. I am working on a fix that | ||
3626 : | # replaces boundaries_of with a more sophisticated function. When it is | ||
3627 : | # all done, genes_in_retion should behave as desired. -- GJO, Aug. 22, 2004 | ||
3628 : | #============================================================================= | ||
3629 : | parrello | 1.200 | # |
3630 : | golsen | 1.141 | # =pod |
3631 : | parrello | 1.200 | # |
3632 : | parrello | 1.287 | # =head3 genes_in_region |
3633 : | parrello | 1.200 | # |
3634 : | golsen | 1.141 | # usage: ( $features_in_region, $min_coord, $max_coord ) |
3635 : | # = $fig->genes_in_region( $genome, $contig, $beg, $end ) | ||
3636 : | parrello | 1.200 | # |
3637 : | golsen | 1.141 | # It is often important to be able to find the genes that occur in a specific |
3638 : | # region on a chromosome. This routine is designed to provide this information. | ||
3639 : | # It returns all genes that overlap the region ( $genome, $contig, $beg, $end ). | ||
3640 : | # $min_coord is set to the minimum coordinate of the returned genes (which may | ||
3641 : | # preceed the given region), and $max_coord the maximum coordinate. Because | ||
3642 : | # the database is indexed by the leftmost and rightmost coordinates of each | ||
3643 : | # feature, the function makes no assumption about the length of the feature, but | ||
3644 : | # it can (and probably will) miss features spanning multiple contigs. | ||
3645 : | parrello | 1.200 | # |
3646 : | golsen | 1.141 | # =cut |
3647 : | parrello | 1.200 | # |
3648 : | # | ||
3649 : | golsen | 1.141 | # sub genes_in_region { |
3650 : | # my ( $self, $genome, $contig, $beg, $end ) = @_; | ||
3651 : | # my ( $x, $db_response, $feature_id, $b1, $e1, @tmp, @bounds ); | ||
3652 : | # my ( $min_coord, $max_coord ); | ||
3653 : | parrello | 1.200 | # |
3654 : | golsen | 1.141 | # my @features = (); |
3655 : | # my $rdbH = $self->db_handle; | ||
3656 : | parrello | 1.200 | # |
3657 : | golsen | 1.141 | # if ( ( $db_response = $rdbH->SQL( "SELECT id |
3658 : | # FROM features | ||
3659 : | # WHERE ( contig = '$contig' ) | ||
3660 : | # AND ( genome = '$genome' ) | ||
3661 : | parrello | 1.200 | # AND ( minloc <= $end ) |
3662 : | golsen | 1.141 | # AND ( maxloc >= $beg );" |
3663 : | # ) | ||
3664 : | # ) | ||
3665 : | # && ( @$db_response > 0 ) | ||
3666 : | # ) | ||
3667 : | # { | ||
3668 : | # # The sort is unnecessary, but provides a consistent ordering | ||
3669 : | parrello | 1.200 | # |
3670 : | golsen | 1.141 | # @tmp = sort { ( $a->[1] cmp $b->[1] ) # contig |
3671 : | # || ( ($a->[2] + $a->[3] ) <=> ( $b->[2] + $b->[3] ) ) # midpoint | ||
3672 : | # } | ||
3673 : | # map { $feature_id = $_->[0]; | ||
3674 : | # ( ( ! $self->is_deleted_fid( $feature_id ) ) # not deleted | ||
3675 : | # && ( $x = $self->feature_location( $feature_id ) ) # and has location | ||
3676 : | # && ( ( @bounds = boundaries_of( $x ) ) == 3 ) # and has bounds | ||
3677 : | parrello | 1.200 | # ) ? [ $feature_id, @bounds ] : () |
3678 : | golsen | 1.141 | # } @$db_response; |
3679 : | parrello | 1.200 | # |
3680 : | golsen | 1.141 | # ( $min_coord, $max_coord ) = ( 10000000000, 0 ); |
3681 : | parrello | 1.200 | # |
3682 : | golsen | 1.141 | # foreach $x ( @tmp ) |
3683 : | # { | ||
3684 : | # ( $feature_id, undef, $b1, $e1 ) = @$x; | ||
3685 : | # push @features, $feature_id; | ||
3686 : | # my ( $min, $max ) = ( $b1 <= $e1 ) ? ( $b1, $e1 ) : ( $e1, $b1 ); | ||
3687 : | # ( $min_coord <= $min ) || ( $min_coord = $min ); | ||
3688 : | # ( $max_coord >= $max ) || ( $max_coord = $max ); | ||
3689 : | # } | ||
3690 : | # } | ||
3691 : | parrello | 1.200 | # |
3692 : | golsen | 1.141 | # return ( @features ) ? ( [ @features ], $min_coord, $max_coord ) |
3693 : | # : ( [], undef, undef ); | ||
3694 : | # } | ||
3695 : | |||
3696 : | # These will be part of the fix to genes_in_region. -- GJO | ||
3697 : | |||
3698 : | parrello | 1.287 | =head3 regions_spanned |
3699 : | |||
3700 : | C<< my ( [ $contig, $beg, $end ], ... ) = $fig->regions_spanned( $loc ); >> | ||
3701 : | golsen | 1.141 | |
3702 : | parrello | 1.287 | or |
3703 : | golsen | 1.141 | |
3704 : | parrello | 1.287 | C<< my ( [ $contig, $beg, $end ], ... ) = FIG::regions_spanned( $loc ); >> |
3705 : | golsen | 1.141 | |
3706 : | The location of a feature in a scalar context is | ||
3707 : | |||
3708 : | parrello | 1.287 | contig_b1_e1, contig_b2_e2, ... [one contig_b_e for each segment] |
3709 : | |||
3710 : | This routine takes as input a scalar location in the above form | ||
3711 : | and reduces it to one or more regions spanned by the gene. This | ||
3712 : | involves combining regions in the location string that are on the | ||
3713 : | same contig and going in the same direction. Unlike L</boundaries_of>, | ||
3714 : | which returns one region in which the entire gene can be found, | ||
3715 : | B<regions_spanned> handles wrapping through the orgin, features | ||
3716 : | split over contigs and exons that are not ordered nicely along | ||
3717 : | the chromosome (ugly but true). | ||
3718 : | golsen | 1.141 | |
3719 : | parrello | 1.287 | =over 4 |
3720 : | |||
3721 : | =item loc | ||
3722 : | |||
3723 : | The location string for a feature. | ||
3724 : | |||
3725 : | =item RETURN | ||
3726 : | |||
3727 : | Returns a list of list references. Each inner list contains a contig ID, a starting | ||
3728 : | position, and an ending position. The starting position may be numerically greater | ||
3729 : | than the ending position (which indicates a backward-traveling gene). It is | ||
3730 : | guaranteed that the entire feature is covered by the regions in the list. | ||
3731 : | |||
3732 : | =back | ||
3733 : | golsen | 1.141 | |
3734 : | =cut | ||
3735 : | |||
3736 : | sub regions_spanned { | ||
3737 : | shift if UNIVERSAL::isa( $_[0], __PACKAGE__ ); | ||
3738 : | my( $location ) = ( @_ == 1 ) ? $_[0] : $_[1]; | ||
3739 : | defined( $location ) || return undef; | ||
3740 : | |||
3741 : | my @regions = (); | ||
3742 : | |||
3743 : | my ( $cur_contig, $cur_beg, $cur_end, $cur_dir ); | ||
3744 : | my ( $contig, $beg, $end, $dir ); | ||
3745 : | my @segs = split( /\s*,\s*/, $location ); # should not have space, but ... | ||
3746 : | @segs || return undef; | ||
3747 : | |||
3748 : | # Process the first segment | ||
3749 : | |||
3750 : | my $seg = shift @segs; | ||
3751 : | ( ( $cur_contig, $cur_beg, $cur_end ) = ( $seg =~ /^(\S+)_(\d+)_\d+$/ ) ) | ||
3752 : | || return undef; | ||
3753 : | $cur_dir = ( $cur_end >= $cur_beg ) ? 1 : -1; | ||
3754 : | |||
3755 : | foreach $seg ( @segs ) { | ||
3756 : | parrello | 1.298 | ( ( $contig, $beg, $end ) = ( $seg =~ /^(\S+)_(\d+)_\d+$/ ) ) || next; |
3757 : | $dir = ( $end >= $beg ) ? 1 : -1; | ||
3758 : | golsen | 1.141 | |
3759 : | parrello | 1.298 | # Is this a continuation? Update end |
3760 : | golsen | 1.141 | |
3761 : | parrello | 1.298 | if ( ( $contig eq $cur_contig ) |
3762 : | && ( $dir == $cur_dir ) | ||
3763 : | && ( ( ( $dir > 0 ) && ( $end > $cur_end ) ) | ||
3764 : | || ( ( $dir < 0 ) && ( $end < $cur_end ) ) ) | ||
3765 : | ) | ||
3766 : | { | ||
3767 : | $cur_end = $end; | ||
3768 : | } | ||
3769 : | golsen | 1.141 | |
3770 : | parrello | 1.298 | # Not a continuation. Report previous and update current. |
3771 : | golsen | 1.141 | |
3772 : | parrello | 1.298 | else |
3773 : | { | ||
3774 : | push @regions, [ $cur_contig, $cur_beg, $cur_end ]; | ||
3775 : | ( $cur_contig, $cur_beg, $cur_end, $cur_dir ) | ||
3776 : | = ( $contig, $beg, $end, $dir ); | ||
3777 : | } | ||
3778 : | golsen | 1.141 | } |
3779 : | |||
3780 : | # There should alwasy be a valid, unreported region. | ||
3781 : | |||
3782 : | push @regions, [ $cur_contig, $cur_beg, $cur_end ]; | ||
3783 : | |||
3784 : | return wantarray ? @regions : \@regions; | ||
3785 : | } | ||
3786 : | |||
3787 : | parrello | 1.287 | =head3 filter_regions |
3788 : | |||
3789 : | C<< my @regions = FIG::filter_regions( $contig, $min, $max, @regions ); >> | ||
3790 : | |||
3791 : | or | ||
3792 : | |||
3793 : | C<< my \@regions = FIG::filter_regions( $contig, $min, $max, @regions ); >> | ||
3794 : | |||
3795 : | or | ||
3796 : | |||
3797 : | C<< my @regions = FIG::filter_regions( $contig, $min, $max, \@regions ); >> | ||
3798 : | |||
3799 : | or | ||
3800 : | |||
3801 : | C<< my \@regions = FIG::filter_regions( $contig, $min, $max, \@regions ); >> | ||
3802 : | |||
3803 : | Filter a list of regions to those that overlap a specified section of a | ||
3804 : | particular contig. Region definitions correspond to those produced | ||
3805 : | by L</regions_spanned>. That is, C<[>I<contig>C<,>I<beg>C<,>I<end>C<]>. | ||
3806 : | In the function call, either I<$contig> or I<$min> and I<$max> can be | ||
3807 : | undefined (permitting anything). So, for example, | ||
3808 : | |||
3809 : | my @regions = FIG::filter_regions(undef, 1, 5000, $regionList); | ||
3810 : | |||
3811 : | would return all regions in C<$regionList> that overlap the first | ||
3812 : | 5000 base pairs in any contig. Conversely, | ||
3813 : | |||
3814 : | my @regions = FIG::filter_regions('NC_003904', undef, undef, $regionList); | ||
3815 : | golsen | 1.141 | |
3816 : | parrello | 1.287 | would return all regions on the contig C<NC_003904>. |
3817 : | golsen | 1.141 | |
3818 : | parrello | 1.287 | =over 4 |
3819 : | |||
3820 : | =item contig | ||
3821 : | |||
3822 : | ID of the contig whose regions are to be passed by the filter, or C<undef> | ||
3823 : | if the contig doesn't matter. | ||
3824 : | |||
3825 : | =item min | ||
3826 : | |||
3827 : | Leftmost position of the region used for filtering. Only regions which contain | ||
3828 : | at least one base pair at or beyond this position will be passed. A value | ||
3829 : | of C<undef> is equivalent to zero. | ||
3830 : | |||
3831 : | =item max | ||
3832 : | |||
3833 : | Rightmost position of the region used for filtering. Only regions which contain | ||
3834 : | at least one base pair on or before this position will be passed. A value | ||
3835 : | of C<undef> is equivalent to the length of the contig. | ||
3836 : | |||
3837 : | =item regionList | ||
3838 : | golsen | 1.141 | |
3839 : | parrello | 1.287 | A list of regions, or a reference to a list of regions. Each region is a |
3840 : | reference to a three-element list, the first element of which is a contig | ||
3841 : | ID, the second element of which is the start position, and the third | ||
3842 : | element of which is the ending position. (The ending position can be | ||
3843 : | before the starting position if the region is backward-traveling.) | ||
3844 : | |||
3845 : | =item RETURN | ||
3846 : | |||
3847 : | In a scalar context, returns a reference to a list of the filtered regions. | ||
3848 : | In a list context, returns the list itself. | ||
3849 : | |||
3850 : | =back | ||
3851 : | golsen | 1.141 | |
3852 : | =cut | ||
3853 : | |||
3854 : | sub filter_regions { | ||
3855 : | my ( $contig, $min, $max, @regions ) = @_; | ||
3856 : | |||
3857 : | @regions || return (); | ||
3858 : | ( ref( $regions[0] ) eq "ARRAY" ) || return undef; | ||
3859 : | |||
3860 : | # Is it a region list, or a reference to a region list? | ||
3861 : | |||
3862 : | if ( ref( $regions[0]->[0] ) eq "ARRAY" ) { @regions = @{ $regions[0] } } | ||
3863 : | |||
3864 : | if ( ! defined( $contig ) ) | ||
3865 : | { | ||
3866 : | ( defined( $min ) && defined( $max ) ) || return undef; | ||
3867 : | } | ||
3868 : | else # with a defined contig name, allow undefined range | ||
3869 : | { | ||
3870 : | defined( $min ) || ( $min = 1 ); | ||
3871 : | defined( $max ) || ( $max = 1000000000 ); | ||
3872 : | } | ||
3873 : | ( $min <= $max ) || return (); | ||
3874 : | |||
3875 : | my ( $c, $b, $e ); | ||
3876 : | my @filtered = grep { ( @$_ >= 3 ) # Allow extra fields? | ||
3877 : | && ( ( $c, $b, $e ) = @$_ ) | ||
3878 : | && ( ( ! defined( $contig ) ) || ( $c eq $contig ) ) | ||
3879 : | && ( ( $e >= $b ) || ( ( $b, $e ) = ( $e, $b ) ) ) | ||
3880 : | && ( ( $b <= $max ) && ( $e >= $min ) ) | ||
3881 : | } @regions; | ||
3882 : | |||
3883 : | return wantarray ? @filtered : \@filtered; | ||
3884 : | } | ||
3885 : | |||
3886 : | parrello | 1.287 | =head3 close_genes |
3887 : | |||
3888 : | C<< my @features = $fig->close_genes($fid, $dist); >> | ||
3889 : | |||
3890 : | Return all features within a certain distance of a specified other feature. | ||
3891 : | |||
3892 : | This method is a quick way to get genes that are near another gene. It calls | ||
3893 : | L</boundaries_of> to get the boundaries of the incoming gene, then passes | ||
3894 : | the region computed to L</genes_in_region>. | ||
3895 : | |||
3896 : | So, for example, if the specified I<$dist> is 500, the method would select | ||
3897 : | a region that extends 500 base pairs to either side of the boundaries for | ||
3898 : | the gene I<$fid>, and pass it to C<genes_in_region> for analysis. The | ||
3899 : | features returned would be those that overlap the selected region. Note | ||
3900 : | that the flaws inherent in C<genes_in_region> are also inherent in this | ||
3901 : | method: if a feature is more than 10000 base pairs long, it may not | ||
3902 : | be caught even though it has an overlap in the specified region. | ||
3903 : | |||
3904 : | =over 4 | ||
3905 : | |||
3906 : | =item fid | ||
3907 : | |||
3908 : | ID of the relevant feature. | ||
3909 : | |||
3910 : | =item dist | ||
3911 : | |||
3912 : | Desired maximum distance. | ||
3913 : | |||
3914 : | =item RETURN | ||
3915 : | |||
3916 : | Returns a list of feature IDs for genes that overlap or are close to the boundaries | ||
3917 : | for the specified incoming feature. | ||
3918 : | |||
3919 : | =back | ||
3920 : | |||
3921 : | =cut | ||
3922 : | golsen | 1.141 | |
3923 : | efrank | 1.1 | sub close_genes { |
3924 : | my($self,$fid,$dist) = @_; | ||
3925 : | parrello | 1.200 | |
3926 : | mkubal | 1.147 | # warn "In close_genes, self=$self, fid=$fid"; |
3927 : | parrello | 1.200 | |
3928 : | efrank | 1.1 | my $loc = $self->feature_location($fid); |
3929 : | if ($loc) | ||
3930 : | { | ||
3931 : | parrello | 1.298 | my($contig,$beg,$end) = &FIG::boundaries_of($loc); |
3932 : | if ($contig && $beg && $end) | ||
3933 : | { | ||
3934 : | my $min = &min($beg,$end) - $dist; | ||
3935 : | my $max = &max($beg,$end) + $dist; | ||
3936 : | my $feat; | ||
3937 : | ($feat,undef,undef) = $self->genes_in_region(&FIG::genome_of($fid),$contig,$min,$max); | ||
3938 : | return @$feat; | ||
3939 : | } | ||
3940 : | efrank | 1.1 | } |
3941 : | return (); | ||
3942 : | } | ||
3943 : | |||
3944 : | parrello | 1.287 | =head3 adjacent_genes |
3945 : | |||
3946 : | C<< my ($left_fid, $right_fid) = $fig->adjacent_genes($fid, $dist); >> | ||
3947 : | |||
3948 : | Return the IDs of the genes immediately to the left and right of a specified | ||
3949 : | feature. | ||
3950 : | |||
3951 : | This method gets a list of the features within the specified distance of | ||
3952 : | the incoming feature (using L</close_genes>), and then chooses the two | ||
3953 : | closest to the feature found. If the incoming feature is on the + strand, | ||
3954 : | these are features to the left and the right. If the incoming feature is | ||
3955 : | on the - strand, the features will be returned in reverse order. | ||
3956 : | |||
3957 : | =over 4 | ||
3958 : | |||
3959 : | =item fid | ||
3960 : | |||
3961 : | ID of the feature whose neighbors are desired. | ||
3962 : | |||
3963 : | =item dist | ||
3964 : | |||
3965 : | Maximum permissible distance to the neighbors. | ||
3966 : | |||
3967 : | =item RETURN | ||
3968 : | |||
3969 : | Returns a two-element list containing the IDs of the features on either side | ||
3970 : | of the incoming feature. | ||
3971 : | |||
3972 : | =back | ||
3973 : | |||
3974 : | =cut | ||
3975 : | |||
3976 : | mkubal | 1.147 | sub adjacent_genes |
3977 : | { | ||
3978 : | my ($self, $fid, $dist) = @_; | ||
3979 : | my (@close, $strand, $i); | ||
3980 : | parrello | 1.200 | |
3981 : | mkubal | 1.147 | # warn "In adjacent_genes, self=$self, fid=$fid"; |
3982 : | parrello | 1.200 | |
3983 : | |||
3984 : | mkubal | 1.147 | $strand = $self->strand_of($fid); |
3985 : | parrello | 1.200 | |
3986 : | mkubal | 1.147 | $dist = $dist || 2000; |
3987 : | @close = $self->close_genes($fid, $dist); | ||
3988 : | for ($i=0; $i < @close; ++$i) { last if ($close[$i] eq $fid); } | ||
3989 : | parrello | 1.200 | |
3990 : | redwards | 1.157 | # RAE note that if $self->strand_of($close[$i-1]) ne $strand then left/right neighbors |
3991 : | # were never set! oops! | ||
3992 : | parrello | 1.200 | |
3993 : | redwards | 1.157 | # I think the concept of Left and right is confused here. In my mind, left and right |
3994 : | # are independent of strand ?? E.g. take a look at PEG fig|196600.1.peg.1806 | ||
3995 : | # this is something like | ||
3996 : | # | ||
3997 : | # ---> <--1805--- --1806--> <--1807-- <---- | ||
3998 : | # | ||
3999 : | # 1805 is always the left neighbor, no? | ||
4000 : | |||
4001 : | my ($left_neighbor, $right_neighbor) = ($close[$i-1], $close[$i+1]); | ||
4002 : | parrello | 1.200 | |
4003 : | parrello | 1.287 | # if (0) # this was if ($i > 0) I just skip this whole section! |
4004 : | # { | ||
4005 : | parrello | 1.298 | # if ($self->strand_of($close[$i-1]) eq $strand) { $left_neighbor = $close[$i-1]; } |
4006 : | parrello | 1.287 | # } |
4007 : | |||
4008 : | if ($i < $#close) | ||
4009 : | mkubal | 1.147 | { |
4010 : | parrello | 1.298 | if ($self->strand_of($close[$i+1]) eq $strand) { $right_neighbor = $close[$i+1]; } |
4011 : | mkubal | 1.147 | } |
4012 : | parrello | 1.200 | |
4013 : | parrello | 1.287 | # ...return genes in transcription order... |
4014 : | if ($strand eq '-') | ||
4015 : | mkubal | 1.147 | { |
4016 : | parrello | 1.298 | ($left_neighbor, $right_neighbor) = ($right_neighbor, $left_neighbor); |
4017 : | mkubal | 1.147 | } |
4018 : | parrello | 1.200 | |
4019 : | parrello | 1.287 | return ($left_neighbor, $right_neighbor) ; |
4020 : | } | ||
4021 : | |||
4022 : | =head3 feature_location | ||
4023 : | |||
4024 : | C<< my $loc = $fig->feature_location($fid); >> | ||
4025 : | |||
4026 : | or | ||
4027 : | |||
4028 : | C<< my @loc = $fig->feature_location($fid);; >> | ||
4029 : | |||
4030 : | Return the location of a feature. The location consists | ||
4031 : | of a list of (contigID, begin, end) triples encoded | ||
4032 : | as strings with an underscore delimiter. So, for example, | ||
4033 : | C<NC_002755_100_199> indicates a location starting at position | ||
4034 : | 100 and extending through 199 on the contig C<NC_002755>. If | ||
4035 : | the location goes backward, the start location will be higher | ||
4036 : | than the end location (e.g. C<NC_002755_199_100>). | ||
4037 : | |||
4038 : | In a scalar context, this method returns the locations as a | ||
4039 : | comma-delimited string | ||
4040 : | parrello | 1.200 | |
4041 : | parrello | 1.287 | NC_002755_100_199,NC_002755_210_498 |
4042 : | mkubal | 1.147 | |
4043 : | parrello | 1.287 | In a list context, the locations are returned as a list |
4044 : | efrank | 1.1 | |
4045 : | parrello | 1.287 | (NC_002755_100_199, NC_002755_210_498) |
4046 : | efrank | 1.1 | |
4047 : | parrello | 1.287 | =over 4 |
4048 : | efrank | 1.1 | |
4049 : | parrello | 1.287 | =item fid |
4050 : | efrank | 1.1 | |
4051 : | parrello | 1.287 | ID of the feature whose location is desired. |
4052 : | efrank | 1.1 | |
4053 : | parrello | 1.287 | =item RETURN |
4054 : | efrank | 1.1 | |
4055 : | parrello | 1.287 | Returns the locations of a feature, either as a comma-delimited |
4056 : | string or a list. | ||
4057 : | efrank | 1.1 | |
4058 : | parrello | 1.287 | =back |
4059 : | efrank | 1.1 | |
4060 : | =cut | ||
4061 : | |||
4062 : | olson | 1.111 | sub feature_location :scalar :list { |
4063 : | efrank | 1.1 | my($self,$feature_id) = @_; |
4064 : | my($relational_db_response,$locations,$location); | ||
4065 : | parrello | 1.200 | |
4066 : | mkubal | 1.147 | # warn "In feature_location, self=$self, fid=$feature_id"; |
4067 : | parrello | 1.200 | |
4068 : | overbeek | 1.136 | if ($self->is_deleted_fid($feature_id)) { return undef } |
4069 : | |||
4070 : | efrank | 1.1 | $locations = $self->cached('_location'); |
4071 : | parrello | 1.287 | if (! ($location = $locations->{$feature_id})) { |
4072 : | my $rdbH = $self->db_handle; | ||
4073 : | if (($relational_db_response = $rdbH->SQL("SELECT location FROM features WHERE ( id = \'$feature_id\' )")) && | ||
4074 : | (@$relational_db_response == 1)) { | ||
4075 : | $locations->{$feature_id} = $location = $relational_db_response->[0]->[0]; | ||
4076 : | } | ||
4077 : | efrank | 1.1 | } |
4078 : | |||
4079 : | parrello | 1.287 | if ($location) { |
4080 : | return wantarray() ? split(/,/,$location) : $location; | ||
4081 : | efrank | 1.1 | } |
4082 : | return undef; | ||
4083 : | } | ||
4084 : | |||
4085 : | parrello | 1.298 | =head3 contig_of |
4086 : | |||
4087 : | C<< my $contigID = $fig->contig_of($location); >> | ||
4088 : | |||
4089 : | Return the ID of the contig containing a location. | ||
4090 : | |||
4091 : | This method only works with SEED-style locations (I<contigID>C<_>I<beg>C<_>I<end>). | ||
4092 : | For more comprehensive location parsing, use the B<Location> object. | ||
4093 : | |||
4094 : | =over 4 | ||
4095 : | |||
4096 : | =item location | ||
4097 : | |||
4098 : | A SEED-style location (I<contigID>C<_>I<beg>C<_>I<end>), or a comma-delimited list | ||
4099 : | of SEED-style locations. In the latter case, only the first location in the list will | ||
4100 : | be processed. | ||
4101 : | |||
4102 : | =item RETURN | ||
4103 : | |||
4104 : | Returns the contig ID from the first location in the incoming string. | ||
4105 : | |||
4106 : | =back | ||
4107 : | |||
4108 : | =cut | ||
4109 : | parrello | 1.287 | |
4110 : | mkubal | 1.147 | sub contig_of |
4111 : | { | ||
4112 : | my ($self, $locus) = @_; | ||
4113 : | parrello | 1.200 | |
4114 : | olson | 1.159 | $locus =~ m/^([^,]+)_\d+_\d+/; |
4115 : | parrello | 1.200 | |
4116 : | mkubal | 1.147 | return $1; |
4117 : | } | ||
4118 : | |||
4119 : | parrello | 1.298 | =head3 beg_of |
4120 : | |||
4121 : | C<< my $beg = $fig->beg_of($location); >> | ||
4122 : | |||
4123 : | Return the beginning point of a location. | ||
4124 : | |||
4125 : | This method only works with SEED-style locations (I<contigID>C<_>I<beg>C<_>I<end>). | ||
4126 : | For more comprehensive location parsing, use the B<Location> object. | ||
4127 : | |||
4128 : | =over 4 | ||
4129 : | |||
4130 : | =item location | ||
4131 : | |||
4132 : | A SEED-style location (I<contigID>C<_>I<beg>C<_>I<end>), or a comma-delimited list | ||
4133 : | of SEED-style locations. In the latter case, only the first location in the list will | ||
4134 : | be processed. | ||
4135 : | |||
4136 : | =item RETURN | ||
4137 : | |||
4138 : | Returns the beginning point from the first location in the incoming string. | ||
4139 : | |||
4140 : | =back | ||
4141 : | |||
4142 : | =cut | ||
4143 : | |||
4144 : | mkubal | 1.147 | sub beg_of |
4145 : | { | ||
4146 : | my ($self, $locus) = @_; | ||
4147 : | parrello | 1.200 | |
4148 : | olson | 1.159 | $locus =~ m/^[^,]+_(\d+)_\d+/; |
4149 : | parrello | 1.200 | |
4150 : | mkubal | 1.147 | return $1; |
4151 : | } | ||
4152 : | |||
4153 : | parrello | 1.298 | =head3 end_of |
4154 : | |||
4155 : | C<< my $end = $fig->end_of($location); >> | ||
4156 : | |||
4157 : | Return the ending point of a location. | ||
4158 : | |||
4159 : | This method only works with SEED-style locations (I<contigID>C<_>I<beg>C<_>I<end>). | ||
4160 : | For more comprehensive location parsing, use the B<Location> object. | ||
4161 : | |||
4162 : | =over 4 | ||
4163 : | |||
4164 : | =item location | ||
4165 : | |||
4166 : | A SEED-style location (I<contigID>C<_>I<beg>C<_>I<end>), or a comma-delimited list | ||
4167 : | of SEED-style locations. In the latter case, only the first location in the list will | ||
4168 : | be processed. | ||
4169 : | |||
4170 : | =item RETURN | ||
4171 : | |||
4172 : | Returns the contig ID from the first location in the incoming string. | ||
4173 : | |||
4174 : | =back | ||
4175 : | |||
4176 : | =cut | ||
4177 : | |||
4178 : | mkubal | 1.147 | sub end_of |
4179 : | { | ||
4180 : | my ($self, $locus) = @_; | ||
4181 : | parrello | 1.200 | |
4182 : | mkubal | 1.147 | $locus =~ m/\S+_\d+_(\d+)$/; |
4183 : | parrello | 1.200 | |
4184 : | mkubal | 1.147 | return $1; |
4185 : | } | ||
4186 : | |||
4187 : | parrello | 1.320 | =head3 upstream_of |
4188 : | |||
4189 : | C<< my $dna = $fig->upstream_of($peg, $upstream, $coding); >> | ||
4190 : | |||
4191 : | Return the DNA immediately upstream of a feature. This method contains code lifted from | ||
4192 : | the C<upstream.pl> script. | ||
4193 : | |||
4194 : | =over 4 | ||
4195 : | |||
4196 : | =item peg | ||
4197 : | |||
4198 : | ID of the feature whose upstream DNA is desired. | ||
4199 : | |||
4200 : | =item upstream | ||
4201 : | |||
4202 : | Number of base pairs considered upstream. | ||
4203 : | |||
4204 : | =item coding | ||
4205 : | |||
4206 : | Number of base pairs inside the feature to be included in the upstream region. | ||
4207 : | |||
4208 : | =item RETURN | ||
4209 : | |||
4210 : | Returns the DNA sequence upstream of the feature's begin point and extending into the coding | ||
4211 : | region. Letters inside a feature are in upper case and inter-genic letters are in lower case. | ||
4212 : | A hyphen separates the true upstream letters from the coding region. | ||
4213 : | |||
4214 : | =back | ||
4215 : | |||
4216 : | =cut | ||
4217 : | #: Return Type $; | ||
4218 : | sub upstream_of { | ||
4219 : | # Get the parameters. | ||
4220 : | my ($self, $peg, $upstream, $coding) = @_; | ||
4221 : | # Declare the work variables. | ||
4222 : | my ($gene_before, $inter_genic, $c_seq) = ("", "", ""); | ||
4223 : | # Declare the return variable. | ||
4224 : | my $retVal; | ||
4225 : | # Compute the upstream. | ||
4226 : | my($contig,$beg,$end) = $self->boundaries_of(scalar $self->feature_location($peg)); | ||
4227 : | my $genome = $self->genome_of($peg); | ||
4228 : | if (defined($contig) && (my $contig_ln = $self->contig_ln($genome,$contig))) | ||
4229 : | { | ||
4230 : | if ($beg < $end) | ||
4231 : | { | ||
4232 : | # Here the feature goes from left to right. Set "b" and "e" to the start and | ||
4233 : | # end of the upstream region, which precedes the feature. | ||
4234 : | my $b = max(1,$beg-$upstream); | ||
4235 : | my $e = max(1,$beg-1); | ||
4236 : | if ($e > $b) | ||
4237 : | { | ||
4238 : | # Here an upstream region exists. We put it in u_seq. | ||
4239 : | my $u_seq = lc $self->dna_seq($genome,join("_",($contig,$b,$e))); | ||
4240 : | # Now we look for a coding region inside the feature. It would go from | ||
4241 : | # "$beg" to "$end1". | ||
4242 : | my $end1 = min($end,$beg+$coding-1); | ||
4243 : | # If a coding region exists, we put it in c_seq. | ||
4244 : | $c_seq = ($end1 > $beg) ? | ||
4245 : | uc $self->dna_seq($genome,join("_",($contig,$beg,$end1))) : ""; | ||
4246 : | # Now we look for a gene in the upstream region. If one exists, we put its | ||
4247 : | # rightmost point in "$e_ov". | ||
4248 : | my (undef,undef,$e_ov) = $self->genes_in_region($genome,$contig,$b,$e); | ||
4249 : | if ($e_ov && ($e_ov >= $b)) | ||
4250 : | { | ||
4251 : | # Get the length of the upstream region that overlaps the preceding gene. | ||
4252 : | # We need to be careful here, because it might actually extend into the | ||
4253 : | # coding region. | ||
4254 : | my $ov_ln = min($e_ov - $b + 1, length $u_seq); | ||
4255 : | $gene_before = uc substr($u_seq,0,$ov_ln); | ||
4256 : | $inter_genic = substr($u_seq,$ov_ln); | ||
4257 : | } | ||
4258 : | else | ||
4259 : | { | ||
4260 : | # No overlap. The entire upstream is considered inter-genic. | ||
4261 : | $gene_before = ""; | ||
4262 : |